首页> 外文期刊>Nuclear Engineering and Design >Influence of straight nozzle geometry on the supersonic under-expanded gas jets
【24h】

Influence of straight nozzle geometry on the supersonic under-expanded gas jets

机译:直喷嘴几何形状对超音速欠膨胀气体射流的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The sodium-cooled fast nuclear reactor (SFR) is one of the most promising designs of the fourth generation (Gen IV) nuclear power reactors. Sodium-gas heat exchangers (SGHE) using nitrogen is being investigated as an alternative to improve operational safety associated with the use of steam Rankine cycles. This alternative eliminates the potential risk of chemical reactions. It is known that cracks inside an SGHE can cause the accidental leakage of nitrogen into the sodium-side. Due to the pressure difference between the secondary and tertiary loops, this nitrogen jet is therefore under-expanded. When the nitrogen leak is strong enough to flush the liquid sodium outside the SGHE channel, the nitrogen jet can be considered as single-phase. In this context, this work focuses on the influence of geometrical parameters of cracks (size, cross-section shape, transverse localization and inclination angle) on the impinging under-expanded nitrogen jet and its shock-wave system. A numerical study of impinging under-expanded nitrogen jet has been carried out using large eddy simulation (LES) technique. We applied a stagnation pressure upstream of the crack of 180 bar while the nozzle pressure ratio (NPR) ranged from 6.0 to 9.2. We were able to identify the link between the nozzle geometry and the Mach disk diameter and its localization. The vorticity distribution at the nozzle can be used to explain the structure of the jets and the entrainment. The central cross-section of the gas jet tends to turn 45 degrees and 90 degrees for square and rectangular cross-section nozzles respectively. The Taylor-Gortler instability is enhanced with a reduction in the nozzle diameter. These instabilities are also increased with square, rectangular and inclined nozzles.
机译:钠冷快速核反应堆(SFR)是第四代(Gen IV)核动力反应堆最有希望的设计之一。正在研究使用氮气的钠气热交换器(SGHE)作为替代方法,以提高与使用蒸汽兰金循环相关的操作安全性。这种替代方法消除了化学反应的潜在风险。众所周知,SGHE内部的裂纹会导致氮气意外泄漏到钠侧。由于第二和第三回路之间的压力差,该氮气射流因此膨胀不足。当氮气泄漏强度足以冲洗SGHE通道外部的液态钠时,可以将氮气喷口视为单相。在这种情况下,这项工作的重点是裂纹的几何参数(尺寸,横截面形状,横向局部化和倾斜角度)对撞击的膨胀不足的氮气射流及其冲击波系统的影响。使用大涡模拟(LES)技术进行了撞击膨胀不足的氮气射流的数值研究。我们在裂纹上游施加了180 bar的停滞压力,而喷嘴压力比(NPR)为6.0至9.2。我们能够确定喷嘴几何形状与马赫盘直径及其位置之间的联系。喷嘴处的涡度分布可用于解释射流的结构和夹带。对于正方形和矩形横截面的喷嘴,气体射流的中心横截面倾向于分别旋转45度和90度。随着喷嘴直径的减小,泰勒-戈特勒不稳定性增加。使用方形,矩形和倾斜喷嘴还会增加这些不稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号