首页> 外文期刊>Neurocomputing >Nonlinear system identification using a simplified Fuzzy Broad Learning System: Stability analysis and a comparative study
【24h】

Nonlinear system identification using a simplified Fuzzy Broad Learning System: Stability analysis and a comparative study

机译:使用简化的模糊广义学习系统进行非线性系统辨识:稳定性分析和比较研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The Fuzzy Broad Learning System (Fuzzy BLS) is established by replacing the feature nodes of a Broad Learning System with the Takagi-Sugeno-Kang (TSK) fuzzy sub-systems. K-means algorithm is employed to cluster the input data so as to reduce computation complexity. And the parameters of a Fuzzy BLS are computed analytically by pseudoinverse. We investigate the learning algorithms of Fuzzy BLS comprehensively and apply them to nonlinear system identification in this paper: First of all, we develop an iterative learning algorithm for updating the weights in top layer and the weights connecting the fuzzy subsystems to the enhancement nodes by gradient descent. Secondly, we analyze and prove the Lyapunov stability of Fuzzy BLS with this iterative algorithm. Then, we consider the fuzzy c-means for clustering input data in the part of fuzzy sub-systems, as well as randomly generated centers for Gaussian membership functions. There are several different learning algorithms due to the choice of clustering methods and calculating parameters by pseudoinverse or gradient descent iteratively, which are compared with each other in detail by system identification problems. It is concluded that the learning algorithms which calculate weights by pseudoinverse always outperform the ones that update them iteratively, no matter which clustering method is chosen. The fuzzy c-means, c-means and random centers each has its own merits in our experiments. In addition, Fuzzy BLS trained by the proposed algorithms demonstrates its superiority over the state-of-the-art neuro-fuzzy models in identifying nonlinear systems. (C) 2019 Elsevier B.V. All rights reserved.
机译:通过使用Takagi-Sugeno-Kang(TSK)模糊子系统替换广泛学习系统的特征节点,建立了模糊广泛学习系统(Fuzzy BLS)。采用K-means算法对输入数据进行聚类,以降低计算复杂度。然后通过伪逆解析地计算出模糊BLS的参数。本文对模糊BLS的学习算法进行了全面研究,并将其应用于非线性系统辨识:首先,我们开发了一种迭代学习算法,用于更新顶层权重以及通过梯度将模糊子系统与增强节点连接的权重。下降。其次,利用该迭代算法分析并证明了模糊BLS的Lyapunov稳定性。然后,我们考虑在模糊子系统的一部分中对输入数据进行聚类的模糊c均值,以及针对高斯隶属函数的随机生成的中心。由于选择了聚类方法并通过伪逆或梯度下降迭代计算参数,因此存在几种不同的学习算法,这些算法通过系统识别问题进行详细比较。结论表明,无论选择哪种聚类方法,通过伪逆计算权重的学习算法总是优于迭代迭代的算法。模糊c均值,c均值和随机中心在我们的实验中各有优点。此外,通过提出的算法训练的模糊BLS在识别非线性系统方面证明了其优于最新的神经模糊模型的优越性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号