首页> 外文期刊>Neurocomputing >Local matrix adaptation in topographic neural maps
【24h】

Local matrix adaptation in topographic neural maps

机译:地形神经图中的局部矩阵适应

获取原文
获取原文并翻译 | 示例
       

摘要

The self-organizing map (SOM) and neural gas (NG) and generalizations thereof such as the generative topographic map constitute popular algorithms to represent data by means of prototypes arranged on a (hopefully) topology representing map. Most standard methods rely on the Euclidean metric, hence the resulting clusters tend to have isotropic form and they cannot account for local distortions or correlations of data. For this reason, several proposals exist in the literature which extend prototype-based clustering towards more general models which, for example, incorporate local principal directions into the winner computation. This allows to represent data faithfully using less prototypes. In this contribution, we establish a link of models which rely on local principal components (PCA), matrix learning, and a formal cost function of NG and SOM which allows to show convergence of the algorithm. For this purpose, we consider an extension of prototype-based clustering algorithms such as NG and SOM towards a more general metric which is given by a full adaptive matrix such that ellipsoidal clusters are accounted for. The approach is derived from a natural extension of the standard cost functions of NG and SOM (in the form of Heskes). We obtain batch optimization learning rules for prototype and matrix adaptation based on these generalized cost functions and we show convergence of the algorithm. The batch optimization schemes can be interpreted as local principal component analysis (PCA) and the local eigenvectors correspond to the main axes of the ellipsoidal clusters. Thus, this approach provides a cost function associated to proposals in the literature which combine SOM or NG with local PCA models. We demonstrate the behavior of matrix NG and SOM in several benchmark examples and in an application to image compression.
机译:自组织图(SOM)和神经气体(NG)及其一般化形式(如生成的地形图)构成了流行的算法,可以通过布置在(有希望的)拓扑表示图上的原型来表示数据。大多数标准方法都依赖于欧几里德度量,因此生成的聚类倾向于具有各向同性的形式,并且无法解决数据的局部失真或相关性。由于这个原因,文献中存在一些提议,这些提议将基于原型的聚类扩展到更通用的模型,例如,将局部主要方向合并到获胜者计算中。这允许使用更少的原型忠实地表示数据。在此贡献中,我们建立了一个模型链接,该模型依赖于局部主成分(PCA),矩阵学习以及NG和SOM的形式成本函数,从而可以证明算法的收敛性。为此,我们考虑将基于原型的聚类算法(例如NG和SOM)向更通用的度量标准进行扩展,该度量标准由一个完整的自适应矩阵给出,从而解决了椭圆形聚类问题。该方法源自NG和SOM(以Heskes的形式)的标准成本函数的自然扩展。基于这些广义成本函数,我们获得了针对原型和矩阵自适应的批优化学习规则,并展示了算法的收敛性。批处理优化方案可以解释为局部主成分分析(PCA),并且局部特征向量对应于椭圆形簇的主轴。因此,这种方法提供了与文献中将SOM或NG与本地PCA模型相结合的提案相关的成本函数。我们在几个基准示例中以及在图像压缩中的应用中演示了矩阵NG和SOM的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号