...
首页> 外文期刊>Neural, Parallel & Scientific Computations >EXPECTED NUMBER OF REAL ROOTS OF CERTAIN GAUSSIAN RANDOM TRIGONOMETRIC POLYNOMIALS
【24h】

EXPECTED NUMBER OF REAL ROOTS OF CERTAIN GAUSSIAN RANDOM TRIGONOMETRIC POLYNOMIALS

机译:某些高斯随机三角函数多项式的实根的期望数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Let D_n(θ) = Σ_(k=0)~n(A_k cos kθ + B_k sin kθ) be a random trigonometric polynomial where the coefficients A_0, A_1,..., A_n, and B_0, B_1,..., B_n, form sequences of Gaussian random variables. Moreover, we assume that the increments Δ_k~1 = A_k-A_(k-1), Δ_k~2 = B_k-B_(k-1), k = 0,1,2,... , n, are independent, with conventional notation of A_(-1) = B_(-1) = 0. The coefficients A_0,A_1, ... ,A_n, and B_0,B_1, ... ,B_n, can be considered as n consecutive observations of a Brownian motion. In this paper we provide the asymptotic behavior of the expected number of real roots of D_n (θ) = 0 as order (2 2~(1/2)n)/3~(1/2). Also by the symmetric property assumption of coefficients, i.e., A_k = A_(n-k), B_k = B_(n-k), we show that the expected number of real roots is of order 2n/3~(1/2).
机译:令D_n(θ)=Σ_(k = 0)〜n(A_k coskθ+ B_k sinkθ)为随机三角多项式,其中系数A_0,A_1,...,A_n和B_0,B_1,..., B_n,形成高斯随机变量的序列。此外,我们假设增量Δ_k〜1 = A_k-A_(k-1),Δ_k〜2 = B_k-B_(k-1),k = 0,1,2,...,n是独立的,常规符号为A _(-1)= B _(-1)=0。系数A_0,A_1,...,A_n和B_0,B_1,...,B_n可以看作是n的连续观测布朗运动。在本文中,我们以(2 2〜(1/2)n)/ 3〜(1/2)的阶数提供了D_n(θ)= 0的期望实根的期望数目的渐近行为。同样通过系数的对称性质假设,即A_k = A_(n-k),B_k = B_(n-k),我们表明期望的实根数约为2n / 3〜(1/2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号