首页> 外文期刊>Neural computation >The Role of Extracellular Conductivity Profiles in Compartmental Models for Neurons: Particulars for Layer 5 Pyramidal Cells
【24h】

The Role of Extracellular Conductivity Profiles in Compartmental Models for Neurons: Particulars for Layer 5 Pyramidal Cells

机译:细胞外电导曲线在神经元隔室模型中的作用:第5层金字塔形细胞的特征

获取原文
获取原文并翻译 | 示例
           

摘要

With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compart-mental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the neuronal reactivity to an electrical stimulation using external microelectrodes.
机译:随着旨在观察大脑内部电活动的技术数量的迅速增加,科学家们感到迫切希望在基于细胞内和细胞外的实验方法之间建立适当的联系。两种物理规模的生物物理模型均已根据妨碍建立此类联系的假设进行了形式化。在这项工作中,我们通过提出一个多室模型来解决这个问题,该模型允许引入复杂的细胞外和细胞内电阻率曲线。该模型通过组合四种设备(积分器,传播器,3D连接器和收集器)考虑了任何类型的神经元的几何和电声特性。特别是,我们将这个框架应用于新皮质中第5层的簇状锥体细胞(PCL5)。我们的模型能够重现此类细胞中反向传播动作电位(AP)的衰减和延迟曲线,并与实验数据更好地吻合。我们使用每个隔间的细胞外电阻的电压降来近似估算由紧邻线性微电极阵列的PCL5产生的局部场电势。根据反向传播AP产生的电压降,我们能够估算PCL5产生的当前多极矩。通过添加与细胞外电阻平行的外部电流源,我们能够创建PCL5对来自附近微电极的电流注入的灵敏度曲线。在我们的PCL5模型中,基于文献调查确定了每个离子电流的动力学和空间分布,并通过实验评估了这些电池的几何特性。我们得出的结论是,将细胞外空间作为一种额外的电渗介质包含在神经元的隔室模型中,对于精确模拟电势沿神经元树突的传播以及使用外部电刺激对神经元的反应性至关重要。微电极。

著录项

  • 来源
    《Neural computation》 |2013年第7期|1807-1852|共46页
  • 作者单位

    Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Aoba-ku Sendai 980-8575, Japan;

    Department of Biomedical Engineering, Florida International University, Miami, FL 33174, U.S.A., and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Aoba-ku Sendai 980-8575, Japan;

    Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Aoba-ku Sendai 980-8575, Japan, and Monell Chemical Senses Center, Philadelphia, PA 19104, U.S.A;

    Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Smart Ageing International Research Center, Tohoku University, Aoba-ku Sendai 980-8575, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号