...
首页> 外文期刊>Navigation >AUTONOMOUS POSITIONING OF RAIL VEHICLES USING THE GNSS BASED SIPOS-RAIL APPROACH
【24h】

AUTONOMOUS POSITIONING OF RAIL VEHICLES USING THE GNSS BASED SIPOS-RAIL APPROACH

机译:基于基于GNSS的SIPOS-Rail方法对车辆进行自动定位

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To ensure safe train operation the position of all trains on a track has to be known at any time. Today this is ensured by trackside equipment (train detection systems and train integrity supervision). To reduce costs, shorten innovation cycles and optimize utilization of routes a shift of position determination into the train and reducing trackside equipment to a minimum is desired. Therefore, trains shall be able to determine their own position with high accuracy, integrity and reliability. To reach these goals but especially to achieve the required reliability the use of complementary localisation sensors is necessary. Combining a receiver-based autonomous differential GNSS system and integrated inertial navigation the SiPoS-Rail concept aims at enabling GNSS navigation for safety critical rail applications. The system is to be used within a train control system with moving block signalling like ETCS level 3 does. The SiPoS-Rail approach combines augmentation of satellite navigation measurements with multi-sensor data fusion. A SiPoS-Rail based localisation unit works in two different modes, a Rover mode and an extended operation mode In the basic operation mode the train operates as a GNSS rover For the PVT (Position, Velocity, Time) calculation a tightly coupled Kalman filter combines measurements of a satellite receiver and a inertial measurement unit. The complementary characteristics of these sensors result in higher availability of the overall system. The localisation unit can handle the temporary failure of a sensor For example in the case of losing the GNSS signal when driving through a tunnel. When passing a balise the localisation unit in the train switches to an extended operation mode acting as a moving reference station to compute differential GNSS corrections. The train uses the precisely known balise position to perform an error estimation of the measured pseudo-ranges. The error model obtained thereby is used for the differential error correction of the GNSS measurements in basic mode. Additionally the integrity of the position information with high certainty can be detected. Due to the equally distribution of balises in the railway system the error model gets frequent local and temporal updates. Within the last years the SiPoS-Rail approach was evaluated at RV/TH Aachen University by the Institute of Automatic Control (IRT) in collaboration with the Institute for Rail Vehicles and Materials Handling Technology (IFS). The required algorithms were developed during this time and deployed to a rapid control prototyping system. The applicability of the proposed method has been shown by extensive test drives. These test drives took place in the railway Galileo testing environment (railGATE). Results of these test drives are part of this publication.
机译:为了确保火车安全运行,必须随时知道轨道上所有火车的位置。如今,这是由轨道旁设备(火车检测系统和火车完整性监督)确保的。为了降低成本,缩短创新周期并优化路线利用,需要将位置确定转移到火车中并将轨道旁设备减少到最小。因此,火车应能够以高精度,完整性和可靠性确定自己的位置。为了达到这些目标,但特别是要获得所需的可靠性,必须使用互补的定位传感器。 SiPoS-Rail概念将基于接收器的自主差分GNSS系统与集成惯性导航相结合,旨在为安全关键铁路应用实现GNSS导航。该系统将在列车控制系统中使用,其移动块信令类似于ETCS 3级。 SiPoS-Rail方法将卫星导航测量的增强与多传感器数据融合相结合。基于SiPoS-Rail的定位单元以两种不同的模式工作,即漫游车模式和扩展运行模式。在基本运行模式下,火车将作为GNSS漫游车运行。对于PVT(位置,速度,时间)计算,紧密耦合的卡尔曼滤波器结合在一起卫星接收机和惯性测量单元的测量。这些传感器的互补特性导致整个系统的更高可用性。定位单元可以处理传感器的临时故障,例如在通过隧道行驶时丢失GNSS信号的情况下。当经过平衡台时,列车中的定位单元会切换到扩展的操作模式,充当移动的参考站,以计算差分GNSS校正。火车使用精确已知的平衡位置来对测得的伪距进行误差估计。由此获得的误差模型用于基本模式下GNSS测量的差分误差校正。另外,可以高度确定地检测位置信息的完整性。由于铁路系统中的行李箱分布均匀,因此误差模型会频繁地进行本地和时间更新。在过去的几年中,自动控制研究所(IRT)与轨道车辆和物料搬运技术研究所(IFS)合作,在RV / TH亚琛大学对SiPoS-Rail方法进行了评估。在这段时间内开发了所需的算法,并将其部署到快速控制原型系统中。大量测试表明了该方法的适用性。这些测试驱动是在铁路Galileo测试环境(railGATE)中进行的。这些测试驱动器的结果是该出版物的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号