...
首页> 外文期刊>Nature >Observation of fractional edge excitations in nanographene spin chains
【24h】

Observation of fractional edge excitations in nanographene spin chains

机译:纳米栓塞链中分数边缘激发的观察

获取原文
获取原文并翻译 | 示例
           

摘要

Using scanning tunnelling microscopy and spectroscopy, fractional edge excitations are observed in nanographene spin chains, enabling the potential to study strongly correlated phases in purely organic materials.Fractionalization is a phenomenon in which strong interactions in a quantum system drive the emergence of excitations with quantum numbers that are absent in the building blocks. Outstanding examples are excitations with charge e/3 in the fractional quantum Hall effect(1,2), solitons in one-dimensional conducting polymers(3,4) and Majorana states in topological superconductors(5). Fractionalization is also predicted to manifest itself in low-dimensional quantum magnets, such as one-dimensional antiferromagnetic S = 1 chains. The fundamental features of this system are gapped excitations in the bulk(6) and, remarkably, S = 1/2 edge states at the chain termini(7-9), leading to a four-fold degenerate ground state that reflects the underlying symmetry-protected topological order(10,11). Here, we use on-surface synthesis(12) to fabricate one-dimensional spin chains that contain the S = 1 polycyclic aromatic hydrocarbon triangulene as the building block. Using scanning tunnelling microscopy and spectroscopy at 4.5 K, we probe length-dependent magnetic excitations at the atomic scale in both open-ended and cyclic spin chains, and directly observe gapped spin excitations and fractional edge states therein. Exact diagonalization calculations provide conclusive evidence that the spin chains are described by the S = 1 bilinear-biquadratic Hamiltonian in the Haldane symmetry-protected topological phase. Our results open a bottom-up approach to study strongly correlated phases in purely organic materials, with the potential for the realization of measurement-based quantum computation(13).
机译:使用扫描隧道显微镜和光谱,在纳米栓塞链中观察到分数边缘激发,使得能够研究纯有机材料中强烈相关的相位的潜力。自定位化是量子系统中强烈相互作用的现象,这使得具有量子数的激励的出现引发了激励的现象这在构建块中不存在。突出的例子是在分数量子霍尔效应(1,2)中的电荷E / 3,一维导电聚合物(3,4)中的孤子和拓扑超导体(5)中的Majorana状态。还预测分数化以在低维量子磁体中表现出本身,例如一维反铁磁S = 1链。该系统的基本特征是批量(6)中的隐形激励,并且显着地,在链球链(7-9)中显着,S = 1/2边缘状态,导致四倍的退化地态,反映了潜在的对称性 - 受保护的拓扑顺序(10,11)。这里,我们使用表面合成(12)来制造含有S = 1个多环芳烃三角形作为构建块的一维的旋转链。使用扫描隧道显微镜和光谱法在4.5 k下,我们在开放式和循环自旋链中的原子刻度下探测到的长度依赖性磁激励,并直接观察到其中的旋转旋转激发和分数边缘状态。精确的对角化计算提供了结论性证据,即旋转链由S = 1个双线性 - 双人·哈密尔顿在卤代对称保护的拓扑阶段中描述。我们的结果开启了自下而上的方法,可以在纯属有机材料中研究强烈相关的相位,具有实现基于测量的量子计算(13)的可能性。

著录项

  • 来源
    《Nature》 |2021年第7880期|287-292|共6页
  • 作者单位

    Empa Swiss Fed Labs Mat Sci & Technol Dubendorf Switzerland|IBM Res Zurich Ruschlikon Switzerland;

    Int Iberian Nanotechnol Lab Braga Portugal|Univ Alicante St Vicent Raspeig Spain;

    Tech Univ Dresden Dresden Germany;

    Univ Alicante St Vicent Raspeig Spain;

    Univ Basque Country San Sebastian Spain|Ikerbasque Basque Fdn Sci Bilbao Spain;

    Empa Swiss Fed Labs Mat Sci & Technol Dubendorf Switzerland;

    Tech Univ Dresden Dresden Germany;

    Empa Swiss Fed Labs Mat Sci & Technol Dubendorf Switzerland;

    Tech Univ Dresden Dresden Germany|Max Planck Inst Microstruct Phys Halle Germany;

    Empa Swiss Fed Labs Mat Sci & Technol Dubendorf Switzerland;

    Int Iberian Nanotechnol Lab Braga Portugal;

    Empa Swiss Fed Labs Mat Sci & Technol Dubendorf Switzerland|Univ Bern Bern Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号