首页> 外文期刊>Nature >Demonstration of the trapped-ion quantum CCD computer architecture
【24h】

Demonstration of the trapped-ion quantum CCD computer architecture

机译:捕获离子量子CCD计算机架构的演示

获取原文
获取原文并翻译 | 示例
           

摘要

The trapped-ion quantum charge-coupled device (QCCD) proposal~(1,2)lays out a blueprint for a universal quantum computer that uses mobile ions as qubits. Analogous to a charge-coupled device (CCD) camera, which stores and processes imaging information as movable electrical charges in coupled pixels, a QCCD computer stores quantum information in the internal state of electrically charged ions that are transported between different processing zones using dynamic electric fields. The promise of the QCCD architecture is to maintain the low error rates demonstrated in small trapped-ion experiments~(3-5)by limiting the quantum interactions to multiple small ion crystals, then physically splitting and rearranging the constituent ions of these crystals into new crystals, where further interactions occur. This approach leverages transport timescales that are fast relative to the coherence times of the qubits, the insensitivity of the qubit states of the ion to the electric fields used for transport, and the low crosstalk afforded by spatially separated crystals. However, engineering a machine capable of executing these operations across multiple interaction zones with low error introduces many difficulties, which have slowed progress in scaling this architecture to larger qubit numbers. Here we use a cryogenic surface trap to integrate all necessary elements of the QCCD architecture-a scalable trap design, parallel interaction zones and fast ion transport-into a programmable trapped-ion quantum computer that has a system performance consistent with the low error rates achieved in the individual ion crystals. We apply this approach to realize a teleported CNOT gate using mid-circuit measurement~(6), negligible crosstalk error and a quantum volume~(7)of 2~(6) = 64. These results demonstrate that the QCCD architecture provides a viable path towards high-performance quantum computers.
机译:捕获离子量子电荷耦合器件(QCCD)提议〜(1,2)为通用量子计算机的蓝图布置出使用移动离子作为QUBITS的通用量子。类似于电荷耦合器件(CCD)相机,其存储和处理成像信息作为耦合像素中的可移动电荷,QCCD计算机将量子信息存储在使用动态电动电动电动电压之间传输的电荷离子的内部状态。领域。 QCCD架构的承诺是通过将量子相互作用限制到多个小离子晶体,然后物理分裂并重新排列这些晶体的组成离子,保持小捕获离子实验中所示的低误差率〜(3-5)。发生进一步相互作用的晶体。该方法利用相对于Qubits的相干时间快速的运输时间尺寸,离子与用于运输的电场的Qubit状态的不敏感性,以及由空间分离的晶体提供的低串扰。但是,工程能够在具有低错误的多个交互区域执行这些操作的机器引入了许多困难,这在将该架构缩放到更大的Qubit数字时已经减慢了进展。在这里,我们使用低温表面陷阱来集成QCCD架构的所有必要元件 - 一种可扩展的陷阱设计,并联交互区域和快速离子传输到可编程捕获的离子量子计算机中,该计算机性能一致地实现了达到的低误差率在各个离子晶体中。我们使用中路测量来实现这种方法来实现传送的CNOT门〜(6),忽略不计串扰误差和2〜(6)= 64的量子体积〜(7)。这些结果表明QCCD架构提供了可行的朝向高性能量子计算机的路径。

著录项

  • 来源
    《Nature》 |2021年第7853期|209-213|共5页
  • 作者单位

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

    Honeywell Quantum Solutions;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号