...
首页> 外文期刊>Nature >Sub-cycle atomic-scale forces coherently control a single-molecule switch
【24h】

Sub-cycle atomic-scale forces coherently control a single-molecule switch

机译:子周期原子尺度力连贯地控制单分子开关

获取原文
获取原文并翻译 | 示例
           

摘要

Scanning probe techniques can leverage atomically precise forces to sculpt matter at surfaces, atom by atom. These forces have been applied quasi-statically to create surface structures(1-7)and influence chemical processes(8,9), but exploiting local dynamics(10-14)to realize coherent control on the atomic scale remains an intriguing prospect. Chemical reactions(15-17), conformational changes(18,19)and desorption(20)have been followed on ultrafast timescales, but directly exerting femtosecond forces on individual atoms to selectively induce molecular motion has yet to be realized. Here we show that the near field of a terahertz wave confined to an atomically sharp tip provides femtosecond atomic-scale forces that selectively induce coherent hindered rotation in the molecular frame of a bistable magnesium phthalocyanine molecule. Combining lightwave-driven scanning tunnelling microscopy(21-24)with ultrafast action spectroscopy(10,13), we find that the induced rotation modulates the probability of the molecule switching between its two stable adsorption geometries by up to 39 per cent. Mapping the response of the molecule in space and time confirms that the force acts on the atomic scale and within less than an optical cycle (that is, faster than an oscillation period of the carrier wave of light). We anticipate that our strategy might ultimately enable the coherent manipulation of individual atoms within single molecules or solids so that chemical reactions and ultrafast phase transitions can be manipulated on their intrinsic spatio-temporal scales.The near field of a terahertz wave confined to a scanning probe tip provides femtosecond atomic-scale forces that coherently modulate the switching probability of a molecule between two stable adsorption geometries.
机译:扫描探针技术可以利用原子上精确的力来雕刻在表面上的表面,原子原子。这些力已经应用了准静态以产生表面结构(1-7)并影响化学过程(8,9),但利用局部动态(10-14)来实现对原子尺度的相干控制仍然是一种有趣的前景。化学反应(15-17),一致性变化(18,19)和解吸(20)已经跟踪超速时间表,但直接施加对单个原子上的飞秒力,以选择性地诱导分子运动尚未实现。在这里,我们表明,太赫兹波的近场限制在原子上尖锐的尖端提供了飞秒的原子尺度力,可选择性地诱导在双稳态镁酞菁分子的分子框架中的相干妨碍旋转。用超快动作光谱(10,13)组合光波驱动扫描隧道显微镜(21-24),发现诱导旋转调节其两个稳定吸附几何形状之间的分子切换的概率高达39%。将分子的响应映射在空间和时间中,确认力作用在原子尺度上,并且在小于光学周期内(即,比光的载波的振荡周期更快)。我们预期我们的策略最终可能最终能够在单个分子或固体内的单个原子的相干操作,因此可以在其内在的时空尺度上操纵化学反应和超快相转变。局限于扫描探针的太赫兹波的近场局部尖端提供了飞秒原子尺度力,可相干地调节两个稳定吸附几何形状之间分子的切换概率。

著录项

  • 来源
    《Nature》 |2020年第7823期|58-62|共5页
  • 作者单位

    Univ Regensburg Dept Phys Regensburg Germany;

    Univ Regensburg Dept Phys Regensburg Germany;

    Univ Regensburg Dept Phys Regensburg Germany;

    Univ Regensburg Dept Phys Regensburg Germany;

    Univ Regensburg Dept Phys Regensburg Germany|IBM Res Zurich Ruschlikon Switzerland;

    IBM Res Zurich Ruschlikon Switzerland;

    Univ Regensburg Dept Phys Regensburg Germany;

    Univ Regensburg Dept Phys Regensburg Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号