首页> 外文期刊>Nature >Composition-dependent thermodynamics of intracellular phase separation
【24h】

Composition-dependent thermodynamics of intracellular phase separation

机译:细胞内相分离的构成依赖热力学

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid–liquid phase separation (LLPS)1,2. Biomolecular interactions—particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions—are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3–6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7–9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates—including the nucleolus, Cajal bodies, stress granules and P-bodies—implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.
机译:摘要细胞内体如核仁,Cajal体和各种信号组件代表膜的细胞器,或缩合物,其通过液 - 液相分离(LLP)1,2形成。生物分子相互作用 - 特别是通过自相关本质上排序的蛋白质区介导的偶等型相互作用 - 被认为是对LLP的热力学驱动力置换,形成可促进组装和加工生物活性复合物的冷凝物,例如核仁内的核糖体亚基。简化的模型系统3-6导致了单个固定饱和度浓度是内源LLPS7-9的定义特征,并且已经建议作为细胞内浓度缓冲2,7,8,10的机制。然而,固定饱和浓度的假设在很大程度上在活细胞内未被遗留下去,其中缩合物的丰富多数的多组分性质可以使这种简单的图像复杂化。在这里,我们表明异相型多组分相互作用主导内源性LLP,并产生未表现出固定饱和浓度的核仁和其他冷凝物。随着各个组分的浓度变化,它们的分区系数以可用于确定底部LLP的热力学的自由能的方式变化。我们发现蛋白质和RNA组分之间的异型相互作用稳定了各种原型的细胞内缩合物 - 包括核仁,Cajal体,应激颗粒和p-体 - 暗示缩合物的组成被底层的生物分子相互作用网络的热力学调整。在RNA处理诸如核仁的凝核的凝聚物的背景下,这种表现在完全组装的核糖核蛋白复合物中的选择性排除,为核心的膀胱核糖体RNA通量提供热力学依据。该方法在概念上是简单的并且容易地实现,并且可以广泛地用于从显微镜图像中提取热力学参数。这些方法铺平了对多组分细胞内相行为的热力学的更深入了解的方法及其与均外凝结物特征的非QuigiBibribriaM活性的相互作用。

著录项

  • 来源
    《Nature》 |2020年第7807期|209-214|共6页
  • 作者单位

    Princeton University;

    Princeton University;

    St Jude Children’s Research Hospital;

    St Jude Children’s Research Hospital;

    St Jude Children’s Research Hospital|Dewpoint Therapeutics;

    Princeton University;

    Princeton University;

    St Jude Children’s Research Hospital;

    Princeton University|Princeton University|Princeton University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号