首页> 外文期刊>Nature >A census of baryons in the Universe from localized fast radio bursts
【24h】

A census of baryons in the Universe from localized fast radio bursts

机译:来自宇宙中的宇宙中的一个人口普查来自本地化的快速无线电爆发

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters1,2. Censuses of the nearby Universe have used absorption line spectroscopy3,4 to observe the ‘invisible’ baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe’s volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas4–6 in denser regions near galaxies7. Other techniques to observe these invisible baryons also have limitations; Sunyaev–Zel’dovich analyses8,9 can provide evidence from gas within filamentary structures, and studies of X-ray emission are most sensitive to gas near galaxy clusters9,10. Here we report a measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts; this technique determines the electron column density along each line of sight and accounts for every ionized baryon11–13. We augment the sample of reported arcsecond-localized14–18 fast radio bursts with four new localizations in host galaxies that have measured redshifts of 0.291, 0.118, 0.378 and 0.522. This completes a sample sufficiently large to account for dispersion variations along the lines of sight and in the host-galaxy environments11, and we derive a cosmic baryon density of Ωb=0.051−0.025+0.021h70−1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${arOmega }_{{m{b}}}={0.051}_{-0.025}^{+0.021}{h}_{70}^{-1}$$end{document} (95 per cent confidence; h70 = H0/(70 km s−1 Mpc−1) and H0 is Hubble’s constant). This independent measurement is consistent with values derived from the cosmic microwave background and from Big Bang nucleosynthesis19,20.
机译:摘要宇宙的四分之三的四分之三位于难以检测的高度漫射状态,只有在星系和星系簇1,2中直接观察到的小部分。附近宇宙的普查已经使用了吸收线谱光谱3,4观察了“看不见的”重区位,但这些测量依赖于大而不确定的校正,并且对大多数宇宙的体积不敏感,可能是大多数群众。特别地,Quasar光谱对原子状态存在的非常少量的氢气敏感,或者在Galaxies7附近的密度区域中的高电离和富集的气体4-6。观察这些看不见的压官的其他技术也有局限性; Sunyaev-Zel'dovich分析8,9可以提供丝状结构内的气体的证据,并且对X射线排放的研究对Galaxy Clusters9,10附近的气体最敏感。在这里,我们使用局部快速无线电突发样本的分散来报告宇宙的重孔含量的测量;该技术沿着每一型视线确定电子柱密度,并针对每个电离的Baryon11-13估计。我们增强了报告的ArcSecond-Localized14-18快速无线电突发的样本,其中四个新的本地化在主机星系中,测量了0.291,0.118,0.378和0.522的红移。这完成了一个足够大的样本,以考虑沿着视线和主机银行环境11的分散变化,我们得出了ωb= 0.051-0.025 + 0.021H70-1 DocumentClass [12pt] {minimal}的宇宙缩静密度 usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setlength { oddsidemargin} { - 69pt} begin {document} $$ { varomega} _ {{ rm {b}}} = {0.051} _ { - 0.025} ^ {+ 0.021} {h} _ {70} ^ { - 1} $$ end {document}( 95%的置信度; H70 = H0 /(70公里S-1 MPC-1)和H0是哈勃的常数)。这种独立的测量与宇宙微波背景和大爆炸核酸合成19,20的值一致。

著录项

  • 来源
    《Nature》 |2020年第7809期|391-395|共5页
  • 作者单位

    International Centre for Radio Astronomy Research Curtin Institute of Radio Astronomy Curtin University Perth Western Australia Australia;

    University of California Observatories–Lick Observatory University of California Santa Cruz CA USA .Kavli Institute for the Physics and Mathematics of the Universe Kashiwa Japan;

    Astronomy Department University of Washington Seattle WA USA;

    View ORCID ID profile Commonwealth Science and Industrial Research Organisation Australia Telescope National Facility Epping New South Wales Australia;

    Commonwealth Science and Industrial Research Organisation Australia Telescope National Facility Epping New South Wales Australia;

    Commonwealth Science and Industrial Research Organisation Australia Telescope National Facility Epping New South Wales Australia.Centre for Astrophysics and Supercomputing Swinburne University of Technology Hawthorn Victoria Australia;

    Centre for Astrophysics and Supercomputing Swinburne University of Technology Hawthorn Victoria Australia;

    International Centre for Radio Astronomy Research Curtin Institute of Radio Astronomy Curtin University Perth Western Australia Australia.Commonwealth Science and Industrial Research Organisation Australia Telescope National Facility Epping New South Wales Australia;

    International Centre for Radio Astronomy Research Curtin Institute of Radio Astronomy Curtin University Perth Western Australia Australia;

    Commonwealth Science and Industrial Research Organisation Australia Telescope National Facility Epping New South Wales Australia.Department of Physics and Astronomy Macquarie University North Ryde New South Wales Australia;

    Centre for Astrophysics and Supercomputing Swinburne University of Technology Hawthorn Victoria Australia;

    Commonwealth Science and Industrial Research Organisation Australia Telescope National Facility Epping New South Wales Australia;

    Department of Physics and Astronomy Macquarie University North Ryde New South Wales Australia;

    International Centre for Radio Astronomy Research Curtin Institute of Radio Astronomy Curtin University Perth Western Australia Australia;

    Centre for Astrophysics and Supercomputing Swinburne University of Technology Hawthorn Victoria Australia;

    Instituto de Física Pontificia Universidad Católica de Valparaíso Valparaíso Chile;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号