首页> 外文期刊>Nature >Controlling protein assembly on inorganic crystals through designed protein interfaces
【24h】

Controlling protein assembly on inorganic crystals through designed protein interfaces

机译:通过设计蛋白质界面控制无机晶体上的蛋白质组装

获取原文
获取原文并翻译 | 示例
       

摘要

The ability of proteins and other macromolecules to interact with inorganic surfaces is essential to biological function. The proteins involved in these interactions are highly charged and often rich in carboxylic acid side chains(1-5), but the structures of most protein-inorganic interfaces are unknown. We explored the possibility of systematically designing structured protein-mineral interfaces, guided by the example of ice-binding proteins, which present arrays of threonine residues (matched to the ice lattice) that order clathrate waters into an ice-like structure(6). Here we design proteins displaying arrays of up to 54 carboxylate residues geometrically matched to the potassium ion (K+) sublattice on muscovite mica (001). At low K+ concentration, individual molecules bind independently to mica in the designed orientations, whereas at high K+ concentration, the designs form two-dimensional liquid-crystal phases, which accentuate the inherent structural bias in the muscovite lattice to produce protein arrays ordered over tens of millimetres. Incorporation of designed protein-protein interactions preserving the match between the proteins and the K+ lattice led to extended self-assembled structures on mica: designed end-to-end interactions produced micrometre-long single-protein-diameter wires and a designed trimeric interface yielded extensive honeycomb arrays. The nearest-neighbour distances in these hexagonal arrays could be set digitally between 7.5 and 15.9 nanometres with 2.1-nanometre selectivity by changing the number of repeat units in the monomer. These results demonstrate that protein-inorganic lattice interactions can be systematically programmed and set the stage for designing protein-inorganic hybrid materials.
机译:蛋白质和其他大分子与无机表面相互作用的能力对于生物学功能至关重要。参与这些相互作用的蛋白质是高度充电的,通常富含羧酸侧链(1-5),但大多数蛋白质无机界面的结构是未知的。我们探讨了系统地设计结构化蛋白质矿物界面的可能性,由冰结合蛋白的实例引导,该冰结合蛋白的实施例是将克拉酸盐水解成冰状结构(6)的苏氨酸残基(与冰晶晶片相匹配)。在这里,我们设计蛋白质显示出高达54个羧酸盐残基的阵列,几何与钾离子(k +)云母(001)上的钾离子(k +)子分子匹配。在低K +浓度下,单独的分子在设计方向上独立地与云母结合,而在高k +浓度下,设计形成二维液晶相,这意味着蛋白质岩晶格中固有的结构偏压产生蛋白质阵列,以产生达到数十的蛋白质阵列毫米。将设计的蛋白质 - 蛋白质相互作用固定在蛋白质和K +晶格之间的匹配导致云母上的自组装结构延伸:设计的端到端相互作用产生了微米长单蛋白直径线和设计的三聚体界面产生广泛的蜂窝阵列。这些六边形阵列中的最近邻距离可以通过改变单体中的重复单元的数量来在7.5和15.9纳米之间以7.5至15.9纳米的选择性设置。这些结果表明,可以系统地编程蛋白质无机晶格相互作用并设定用于设计蛋白质无机混合材料的阶段。

著录项

  • 来源
    《Nature》 |2019年第7764期|251-256|共6页
  • 作者单位

    Univ Washington Dept Biochem Seattle WA 98195 USA|Univ Washington Inst Prot Design Seattle WA 98195 USA;

    Pacific Northwest Natl Lab Phys & Computat Sci Directorate Phys Sci Div Richland WA 99354 USA|Univ Washington Dept Mat Sci & Engn Seattle WA 98195 USA;

    Pacific Northwest Natl Lab Phys & Computat Sci Directorate Phys Sci Div Richland WA 99354 USA|Univ Washington Dept Mat Sci & Engn Seattle WA 98195 USA;

    Univ Washington Dept Biochem Seattle WA 98195 USA|Univ Washington Inst Prot Design Seattle WA 98195 USA|Pacific Northwest Natl Lab Phys & Computat Sci Directorate Phys Sci Div Richland WA 99354 USA|Univ Washington Howard Hughes Med Inst Seattle WA 98195 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号