首页> 外文期刊>Nature >Gram-scale bottom-up flash graphene synthesis
【24h】

Gram-scale bottom-up flash graphene synthesis

机译:克级自下而上的快速石墨烯合成

获取原文
获取原文并翻译 | 示例
       

摘要

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment(1-3). Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step(3,4). Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution(4-6). Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source; when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.
机译:大部分块状石墨烯是通过自上而下的方法生产的,将石墨剥落,石墨通常需要大量溶剂才能进行高能混合,剪切,超声处理或电化学处理(1-3)。尽管石墨化学氧化成氧化石墨烯会促进剥落,但它需要苛刻的氧化剂,并在随后的还原步骤(3,4)后留下具有缺陷的穿孔结构的石墨烯。如果通过化学气相沉积或先进的合成有机方法进行自下而上的高质量石墨烯合成,通常会被限制在极少量的合成中;如果在本体溶液中进行,则自底向上合成会形成缺陷结构(4-6)。在这里,我们证明了通过快速焦耳快速加热廉价的碳源(例如煤,石油焦,生物炭,炭黑,废弃食品,橡胶轮胎和混合的塑料废料)可以在不到一秒钟的时间内提供克级的石墨烯。在用于生产该产品的过程后,该产品名为快速石墨烯(FG),在堆叠的石墨烯层之间显示出涡轮层排列(即,很少有序)。 FG合成不使用熔炉,也不使用溶剂或反应性气体。产量取决于来源的碳含量。当使用高碳源(例如炭黑,无烟煤或煅烧焦炭)时,收率范围为80%至90%,而碳纯度大于99%。无需纯化步骤。拉曼光谱分析显示,FG的强度低或不存在D谱带,表明FG具有迄今为止报道的石墨烯缺陷浓度最低的缺陷浓度,并证实了FG的涡轮层堆积,这明显不同于涡轮层石墨。 FG层的无序取向有助于其在复合材料形成过程中混合时快速脱落。 FG合成的电能成本仅为每克7.2千焦耳,这可能使FG适用于塑料,金属,胶合板,混凝土和其他建筑材料的散装复合材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号