首页> 外文期刊>Nature >Vowel recognition with four coupled spin-torque nano - oscillators
【24h】

Vowel recognition with four coupled spin-torque nano - oscillators

机译:具有四个耦合自旋扭矩纳米振荡器的元音识别

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, artificial neural networks have become the flagship algorithm of artificial intelligence'. In these systems, neuron activation functions are static, and computing is achieved through standard arithmetic operations. By contrast, a prominent branch of neuroinspired computing embraces the dynamical nature of the brain and proposes to endow each component of a neural network with dynamical functionality, such as oscillations, and to rely on emergent physical phenomena, such as synchronization(2-6), for solving complex problems with small networks(7-11). This approach is especially interesting for hardware implementations, because emerging nanoelectronic devices can provide compact and energy-efficient nonlinear auto-oscillators that mimic the periodic spiking activity of biological neurons(12-16). The dynamical couplings between oscillators can then be used to mediate the synaptic communication between the artificial neurons. One challenge for using nanodevices in this way is to achieve learning, which requires fine control and tuning of their coupled oscillations(17); the dynamical features of nanodevices can be difficult to control and prone to noise and variability(18). Here we show that the outstanding tunability of spintronic nano-oscillators-that is, the possibility of accurately controlling their frequency across a wide range, through electrical current and magnetic field-can be used to address this challenge. We successfully train a hardware network of four spin-torque nanooscillators to recognize spoken vowels by tuning their frequencies according to an automatic real-time learning rule. We show that the high experimental recognition rates stem from the ability of these oscillators to synchronize. Our results demonstrate that non-trivial pattern classification tasks can be achieved with small hardware neural networks by endowing them with nonlinear dynamical features such as oscillations and synchronization.
机译:近年来,人工神经网络已成为人工智能的旗舰算法。在这些系统中,神经元激活函数是静态的,并且计算是通过标准算术运算实现的。相比之下,受神经启发的计算的一个显着分支包含了大脑的动态性质,并建议赋予神经网络的每个组件以动态功能(例如振荡),并依靠新兴的物理现象(例如同步)(2-6) ,用于使用小型网络解决复杂的问题(7-11)。这种方法对于硬件实现尤为有趣,因为新兴的纳米电子器件可以提供紧凑且节能的非线性自动振荡器,以模仿生物神经元的周期性尖峰活动(12-16)。然后可以使用振荡器之间的动态耦合来介导人工神经元之间的突触通讯。以这种方式使用纳米器件的一个挑战是实现学习,这需要对它们的耦合振荡进行精细控制和调整(17)。纳米器件的动力学特征可能难以控制,并且容易产生噪声和变异性(18)。在这里,我们证明了自旋电子纳米振荡器的出色可调性,即通过电流和磁场在宽范围内精确控制其频率的可能性,可以用来应对这一挑战。我们成功地训练了一个由四个自旋扭矩纳米振荡器组成的硬件网络,以根据自动实时学习规则调整语音元音的频率,从而识别语音元音。我们表明,较高的实验识别率源于这些振荡器进行同步的能力。我们的结果表明,通过为小型硬件神经网络赋予非线性动态功能(如振荡和同步),可以实现非平凡的模式分类任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号