首页> 外文期刊>Nature >Self-coalescing flows in microfluidics for pulse - shaped delivery of reagents
【24h】

Self-coalescing flows in microfluidics for pulse - shaped delivery of reagents

机译:微流体中的自聚集流,用于脉冲状输送试剂

获取原文
获取原文并翻译 | 示例
           

摘要

Microfluidic systems can deliver portable point-of-care diagnostics without the need for external equipment or specialist operators, by integrating all reagents and manipulations required for a particular assay in one device(1). A key approach is to deposit picogram quantities of dried reagents in microchannels with micrometre precision using specialized inkjet plotters(2-5). This means that reagents can be stored for long periods of time and reconstituted spontaneously when adding a liquid sample. But it is challenging to carry out complex operations using multiple reagents, because shear flow enhances their dispersion and they tend to accumulate at moving liquid fronts, resulting in poor spatiotemporal control over the concentration profile of the reconstituted reagents(6). One solution is to limit the rate of release of reagents into the liquid(7-10). However, this requires the fine-tuning of different reagents, conditions and targeted operations, and cannot readily produce the complex, time-dependent multireagent concentration pulses required for sophisticated on-chip assays. Here we report and characterize a capillary flow phenomenon that we term self-coalescence, which is seen when a confined liquid with a stretched air-liquid interface is forced to 'zip' back onto itself in a microfluidic channel, thereby allowing reagent reconstitution with minimal dispersion. We provide a comprehensive framework that captures the physical underpinning of this effect. We also fabricate scalable, compact and passive microfluidic structures-'self-coalescence modules', or SCMs-that exploit and control this phenomenon in order to dissolve dried reagent deposits in aqueous solutions with precise spatiotemporal control. We show that SCMs can reconstitute multiple reagents so that they either undergo local reactions or are sequentially delivered in a flow of liquid. SCMs are easily fabricated in different materials, readily configured to enable different reagent manipulations, and readily combined with other microfluidic technologies, so should prove useful for assays, diagnostics, high-throughput screening and other technologies requiring efficient preparation and manipulation of small volumes of complex solutions.
机译:通过将一种特定测定所需的所有试剂和操作集成到一个设备中,微流体系统无需外部设备或专业操作人员即可提供便携式现场诊断服务(1)。一种关键方法是使用专门的喷墨绘图仪(2-5)将皮克数量的干燥试剂以微米级的精度沉积在微通道中。这意味着试剂可以保存很长时间,并且在添加液体样品时可以自发地重构。但是使用多种试剂进行复杂的操作是具有挑战性的,因为剪切流会增强其分散性,并且它们倾向于在移动的液体前沿聚集,从而导致对重构试剂的浓度分布的时空控制不佳(6)。一种解决方案是限制试剂释放到液体中的速率(7-10)。但是,这需要对不同的试剂,条件和目标操作进行微调,并且不能轻易生成复杂的片上分析所需的复杂的,随时间变化的多试剂浓度脉冲。在这里,我们报告并描述了一种毛细管流动现象,我们称其为自凝结,这种现象是在具有延伸的气液界面的密闭液体被迫在微流体通道中“拉回”自身时看到的,从而使试剂的重组减少到最低限度。分散。我们提供了一个全面的框架,该框架捕获了这种影响的物理基础。我们还制造可扩展的,紧凑的和被动的微流体结构-“自凝聚模块”或SCM-利用和控制这种现象,以便通过精确的时空控制将干燥的试剂沉积物溶解在水溶液中。我们表明,SCM可以重构多种试剂,因此它们要么经历局部反应,要么依次以液体流动的形式传递。 SCM易于用不同的材料制造,易于配置以实现不同的试剂操作,并易于与其他微流体技术结合使用,因此应证明对测定,诊断,高通量筛选和其他需要有效制备和处理小体积复杂化合物的技术很有用解决方案。

著录项

  • 来源
    《Nature》 |2019年第7777期|228-232|共5页
  • 作者单位

    IBM Res Zurich Ruschlikon Switzerland|Univ Zurich ETH Zurich Inst Neuroinformat Zurich Switzerland;

    EPM Dept Engn Phys Montreal PQ Canada;

    IBM Res Zurich Ruschlikon Switzerland;

    EPM Dept Engn Phys Montreal PQ Canada|Inst Canc Montreal Montreal PQ Canada|CRCHUM Montreal PQ Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号