首页> 外文期刊>Nature >The rheology and thermal history of Mars revealed by the orbital evolution of Phobos
【24h】

The rheology and thermal history of Mars revealed by the orbital evolution of Phobos

机译:火卫一的轨道演化揭示了火星的流变学和热史

获取原文
获取原文并翻译 | 示例
       

摘要

The evolution and internal structure of Mars are, by comparison to its present-day surface, poorly known-although evidence of recent volcanic activity(1) suggests that its deep interior remains hot and convectively cooling. The cooling rate of Mars is related to its early thermal state and to its rheology, which determines its ability to deform and to dynamically evolve(2). Attempts to reconstruct the dynamic history of Mars and reveal its present-day structure, by combining the study of thermal evolution with surface observations, are limited by the interplay between several key quantities-including temperature, composition and rheology. Here we show that by considering Phobos (the closest satellite of Mars)-the orbital evolution of which is governed by the thermochemical history of Mars, through tidal interactions-we can gain insight into the thermal history and rheology of the planet. We investigated the long-term evolution of the main envelopes of Mars; these comprise a liquid metallic core that is overlain by a homogeneous silicate convecting mantle underneath an evolving heterogeneous lithospheric lid that includes a crust enriched in radiogenic elements. By exploiting the relationship between Mars and Phobos within an established in situ scenario for the early origin of the moons of Mars(3), we find that-initially-Mars was moderately hotter (100 to 200 kelvin) than it is today, and that its mantle sluggishly deforms in the dislocation creep regime. This corresponds to a reference viscosity of 10(22.2 +/- 0.5) pascal seconds and to a moderate to relatively weak intrinsic sensitivity of viscosity to temperature and pressure. Our approach predicts a present-day average crustal thickness of 40 +/- 25 kilometres and a surface heat flow of 20 +/- 1 milliwatts per square metre. We show that combining these predictions with data from future and ongoing space missions-such as InSight-could reduce uncertainties in Martian thermal and rheological histories, and help to uncover the origin of Phobos.
机译:与目前的火星表面相比,火星的演化和内部结构鲜为人知,尽管最近火山活动的证据[1]表明火星的深部内部仍然很热并且对流冷却。火星的冷却速率与其早期的热态及其流变性有关,后者决定了其变形和动态演化的能力(2)。通过将热演化研究与地表观测相结合,试图重建火星动力学历史并揭示其当今结构的尝试受到温度,成分和流变学等几个关键量之间相互作用的限制。在这里,我们表明,通过考虑火卫一(火卫一,它的轨道演化受火星的热化学史控制),通过潮汐相互作用,我们可以了解行星的热史和流变学。我们研究了火星主要区域的长期演变;它们包括一个液态金属核,在一个演化的非均质岩石圈盖下覆盖着一层均质的硅酸盐对流幔,该岩石圈包括富含放射源元素的地壳。通过利用火星与火卫一之间的关系在火星卫星的早期起源的既定场景中进行观测(3),我们发现火星最初比今天适度高温(100至200开尔文),并且它的地幔在位错蠕变状态下缓慢变形。这对应于10(22.2 +/- 0.5)帕斯卡秒的参考粘度,并且对应于粘度对温度和压力的中等至相对弱的固有灵敏度。我们的方法预测,当今的平均地壳厚度为40 +/- 25公里,表面热流为每平方米20 +/- 1毫瓦。我们表明,将这些预测与来自未来和正在进行的太空任务(例如InSight)的数据相结合,可以减少火星热和流变历史的不确定性,并有助于揭示火卫一的起源。

著录项

  • 来源
    《Nature》 |2019年第7757期|523-527|共5页
  • 作者单位

    Univ Sorbonne Paris Cite, CNRS, Inst Phys Globe Paris, Paris, France;

    Univ Sorbonne Paris Cite, CNRS, Inst Phys Globe Paris, Paris, France;

    CALTECH, Jet Prop Lab, Pasadena, CA USA;

    CALTECH, Jet Prop Lab, Pasadena, CA USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:17:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号