首页> 外文期刊>Nature >To catch and reverse a quantum jump mid-flight
【24h】

To catch and reverse a quantum jump mid-flight

机译:捕捉并逆转飞行中的量子跃变

获取原文
获取原文并翻译 | 示例
           

摘要

In quantum physics, measurements can fundamentally yield discrete and random results. Emblematic of this feature is Bohr's 1913 proposal of quantum jumps between two discrete energy levels of an atom(1). Experimentally, quantum jumps were first observed in an atomic ion driven by a weak deterministic force while under strong continuous energy measurement(2-4). The times at which the discontinuous jump transitions occur are reputed to be fundamentally unpredictable. Despite the non-deterministic character of quantum physics, is it possible to know if a quantum jump is about to occur? Here we answer this question affirmatively: we experimentally demonstrate that the jump from the ground state to an excited state of a superconducting artificial three-level atom can be tracked as it follows a predictable 'flight', by monitoring the population of an auxiliary energy level coupled to the ground state. The experimental results demonstrate that the evolution of each completed jump is continuous, coherent and deterministic. We exploit these features, using real-time monitoring and feedback, to catch and reverse quantum jumps mid-flight-thus deterministically preventing their completion. Our findings, which agree with theoretical predictions essentially without adjustable parameters, support the modern quantum trajectory theory(5-9) and should provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as the early detection of error syndromes in quantum error correction.
机译:在量子物理学中,测量可以从根本上产生离散和随机的结果。 Bohr在1913年提出的在原子的两个离散能级之间进行量子跃迁的建议就是这一特征的体现(1)。实验上,在强连续能量测量下,首先在弱确定性驱动的原子离子中观察到了量子跃迁(2-4)。据说不连续的跳变发生的时间基本上是不可预测的。尽管量子物理学具有不确定性,但是否有可能知道量子跃迁是否会发生?在这里,我们肯定地回答这个问题:我们通过实验证明,通过监测辅助能级的数量,可以跟踪超导人工三能级原子从基态到激发态的跃迁,因为它遵循可预测的“飞行”。耦合到基态。实验结果表明,每个完成的跳跃的演化都是连续的,连贯的和确定的。我们利用实时监控和反馈来利用这些功能,以捕捉并逆转飞行中的量子跃变,从而确定地阻止其完成。我们的发现基本上与无可调整参数的理论预测相符,支持了现代量子轨迹理论(5-9),并应为探索量子系统控制中的实时干预技术(如早期检测)提供新的依据。量子纠错中的错误校正子。

著录项

  • 来源
    《Nature》 |2019年第7760期|200-204|共5页
  • 作者单位

    Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA|TJ Watson Res Ctr IBM, Yorktown Hts, NY 10598 USA;

    Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA;

    Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA;

    Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA;

    Univ Auckland, Dept Phys, Dodd Walls Ctr Photon & Quantum Technol, Auckland, New Zealand;

    Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA;

    Yale Univ, Yale Quantum Inst, New Haven, CT USA|INRIA Paris, QUANTIC Team, Paris, France;

    Univ Auckland, Dept Phys, Dodd Walls Ctr Photon & Quantum Technol, Auckland, New Zealand;

    Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号