首页> 外文期刊>Nature >Experimental realization of on-chip topological nanoelectromechanical metamaterials
【24h】

Experimental realization of on-chip topological nanoelectromechanical metamaterials

机译:片上拓扑纳米机电超材料的实验实现

获取原文
获取原文并翻译 | 示例
           

摘要

Guiding waves through a stable physical channel is essential for reliable information transport. However, energy transport in high-frequency mechanical systems, such as in signal-processing applications(1), is particularly sensitive to defects and sharp turns because of back-scattering and losses(2). Topological phenomena in condensed matter systems have shown immunity to defects and unidirectional energy propagation(3). Topological mechanical metamaterials translate these properties into classical systems for efficient phononic energy transport. Acoustic and mechanical topological metamaterials have so far been realized only in large-scale systems, such as arrays of pendulums(4), gyroscopic lattices(5,6,) structured plates(7,8) and arrays of rods, cans and other structures acting as acoustic scatterers(9-12). To fulfil their potential in device applications, mechanical topological systems need to be scaled to the on-chip level for high-frequency transport(13-15). Here we report the experimental realization of topological nanoelectromechanical metamaterials, consisting of two-dimensional arrays of freestanding silicon nitride nanomembranes that operate at high frequencies (10-20 megahertz). We experimentally demonstrate the presence of edge states, and characterize their localization and Dirac-cone-like frequency dispersion. Our topological waveguides are also robust to waveguide distortions and pseudospin-dependent transport. The on-chip integrated acoustic components realized here could be used in unidirectional waveguides and compact delay lines for high-frequency signal-processing applications.
机译:通过稳定的物理通道引导电波对于可靠的信息传输至关重要。但是,高频机械系统中的能量传输,例如信号处理应用(1),由于反向散射和损耗(2)对缺陷和急转弯特别敏感。凝聚态系统中的拓扑现象显示出对缺陷和单向能量传播的抵抗力(3)。拓扑机械超材料将这些特性转换为用于有效声子能量传输的经典系统。迄今为止,仅在大规模系统中实现了声学和机械拓扑超材料,例如摆锤阵列(4),陀螺镜格(5,6,)结构板(7,8)以及杆,罐和其他结构的阵列充当声散射体(9-12)。为了发挥其在设备应用中的潜力,需要将机械拓扑系统扩展到片上水平以进行高频传输(13-15)。在这里,我们报告了拓扑纳米机电超材料的实验实现,该材料由在高频(10-20兆赫兹)下运行的独立式氮化硅纳米膜的二维阵列组成。我们通过实验证明了边缘状态的存在,并表征了它们的定位和像狄拉克锥一样的频率色散。我们的拓扑波导对于波导的变形和伪自旋相关的传输也具有鲁棒性。此处实现的片上集成声学组件可用于高频信号处理应用的单向波导和紧凑型延迟线中。

著录项

  • 来源
    《Nature》 |2018年第7735期|229-233|共5页
  • 作者单位

    Swiss Fed Inst Technol, Dept Mech & Proc Engn, Zurich, Switzerland;

    Korea Inst Adv Study, Seoul, South Korea;

    CALTECH, Engn & Appl Sci, Pasadena, CA 91125 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号