...
首页> 外文期刊>Nature >An optical lattice clock
【24h】

An optical lattice clock

机译:光学晶格钟

获取原文
获取原文并翻译 | 示例

摘要

The precision measurement of time and frequency is a prerequisite not only for fundamental science but also for technologies that support broadband communication networks and navigation with global positioning systems ( GPS). The SI second is currently realized by the microwave transition of Cs atoms with a fractional uncertainty of 10(-15) ( ref. 1). Thanks to the optical frequency comb technique(2,3), which established a coherent link between optical and radio frequencies, optical clocks(4) have attracted increasing interest as regards future atomic clocks with superior precision. To date, single trapped ions(4-6) and ultracold neutral atoms in free fall(7,8) have shown record high performance that is approaching that of the best Cs fountain clocks(1). Here we report a different approach, in which atoms trapped in an optical lattice serve as quantum references. The 'optical lattice clock'(9,10) demonstrates a linewidth one order of magnitude narrower than that observed for neutral-atom optical clocks(7,8,11), and its stability is better than that of single-ion clocks(4,5). The transition frequency for the Sr lattice clock is 429,228,004,229,952( 15) Hz, as determined by an optical frequency comb referenced to the SI second.
机译:时间和频率的精确测量不仅是基础科学的前提,也是支持宽带通信网络和全球定位系统(GPS)导航的技术的先决条件。目前,SI秒是通过Cs原子的微波跃迁实现的,不确定度的分数不确定度为10(-15)(参考文献1)。由于光频率梳技术(2,3)在光频率和射频之间建立了连贯的联系,光时钟(4)对于未来具有更高精度的原子钟引起了越来越多的关注。迄今为止,单个捕获的离子(4-6)和自由下落的超冷中性原子(7,8)已显示出创纪录的高性能,已接近最佳Cs喷泉钟(1)。在这里,我们报告了另一种方法,其中捕获在光学晶格中的原子用作量子参考。 ``光学晶格钟''(9,10)的线宽比中性原子光学钟(7,8,11)观察到的线宽窄一个数量级,并且其稳定性优于单离子钟(4) ,5)。 Sr晶格时钟的跃迁频率为429,228,004,229,952(15)Hz,由参考SI秒的光频梳确定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号