首页> 外文期刊>Nature >Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF
【24h】

Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF

机译:NURF的BPTF PHD手指定点读出组蛋白H3K4me3的分子基础

获取原文
获取原文并翻译 | 示例
       

摘要

Mono-, di- and trimethylated states of particular histone lysine residues are selectively found in different regions of chromatin, thereby implying specialized biological functions for these marks ranging from heterochromatin formation to X-chromosome inactivation and transcriptional regulation(1-3). A major challenge in chromatin biology has centred on efforts to define the connection between specific methylation states and distinct biological readouts impacting on function(4). For example, histone H3 trimethylated at lysine 4 (H3K4me3) is associated with transcription start sites of active genes(5-7), but the molecular 'effectors' involved in specific recognition of H3K4me3 tails remain poorly understood. Here we demonstrate the molecular basis for specific recognition of H3(1-15)K4me3 (residues 1-15 of histone H3 trimethylated at K4) by a plant homeodomain (PHD) finger of human BPTF (bromodomain and PHD domain transcription factor), the largest subunit of the ATP-dependent chromatin-remodelling complex, NURF (nucleosome remodelling factor). We report on crystallographic and NMR structures of the bromodomain-proximal PHD finger of BPTF in free and H3(1-15)K4me3-bound states. H3(1-15)K4me3 interacts through anti-parallel beta-sheet formation on the surface of the PHD finger, with the long side chains of arginine 2 (R2) and K4me3 fitting snugly in adjacent pre-formed surface pockets, and bracketing an invariant tryptophan. The observed stapling role by non-adjacent R2 and K4me3 provides a molecular explanation for H3K4me3 site specificity. Binding studies establish that the BPTF PHD finger exhibits a modest preference for K4me3- over K4me2-containing H3 peptides, and discriminates against monomethylated and unmodified counterparts. Furthermore, we identified key specificity-determining residues from binding studies of H3(1-15)K4me3 with PHD finger point mutants. Our findings call attention to the PHD finger as a previously uncharacterized chromatin-binding module found in a large number of chromatin-associated proteins.
机译:在染色质的不同区域选择性地发现特定组蛋白赖氨酸残基的单,二和三甲基化状态,从而暗示这些标记具有特殊的生物学功能,从异染色质形成到X染色体失活和转录调控(1-3)。染色质生物学的主要挑战集中在定义特定甲基化状态与影响功能的不同生物学读数之间的联系上(4)。例如,在赖氨酸4(H3K4me3)处三甲基化的组蛋白H3与活性基因的转录起始位点相关(5-7),但对H3K4me3尾巴的特异性识别所涉及的分子``效应子''仍然知之甚少。在这里,我们证明了人BPTF的植物同源域(PHD)手指(溴域和PHD域转录因子)对H3(1-15)K4me3(在K4处三甲基化的组蛋白H3残基1-15)的特异性识别的分子基础。 ATP依赖的染色质重塑复合体的最大亚基NURF(核小体重塑因子)。我们在自由和H3(1-15)K4me3结合状态报告BPTF的溴结构域近端PHD手指的晶体学和NMR结构。 H3(1-15)K4me3通过在PHD手指表面形成反平行的β-折叠而相互作用,其中精氨酸2(R2)和K4me3的长侧链紧密贴合在相邻的预成型表面袋中,并用括号包围不变色氨酸。通过不相邻的R2和K4me3观察到的装订作用为H3K4me3位点特异性提供了分子解释。结合研究表明,BPTF PHD手指比含K4me2的H3肽对K4me3-表现出适度的偏爱,并且可以区分单甲基化和未修饰的对应物。此外,我们从H3(1-15)K4me3与PHD手指点突变体的结合研究中确定了确定关键特异性的残基。我们的发现引起人们对PHD手指的关注,因为PHD手指是在大量与染色质相关的蛋白质中发现的先前未表征的染色质结合模块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号