首页> 外文期刊>Nature >Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting
【24h】

Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting

机译:通过单次转换计数对晶体面依赖催化的空间分辨观察

获取原文
获取原文并翻译 | 示例
       

摘要

Catalytic processes on surfaces have long been studied by probing model reactions on single-crystal metal surfaces under high vacuum conditions. Yet the vast majority of industrial heterogeneous catalysis occurs at ambient or elevated pressures using complex materials with crystal faces, edges and defects differing in their catalytic activity. Clearly, if new or improved catalysts are to be rationally designed, we require quantitative correlations between surface features and catalytic activity - ideally obtained under realistic reaction conditions(1-3). Transmission electron microscopy(4-6) and scanning tunnelling microscopy(7,8) have allowed in situ characterization of catalyst surfaces with atomic resolution, but are limited by the need for low-pressure conditions and conductive surfaces, respectively. Sum frequency generation spectroscopy can identify vibrations of adsorbed reactants and products in both gaseous and condensed phases(9), but so far lacks sensitivity down to the single molecule level. Here we adapt real-time monitoring of the chemical transformation of individual organic molecules by fluorescence microscopy(10-12) to monitor reactions catalysed by crystals of a layered double hydroxide immersed in reagent solution. By using a wide field microscope, we are able to map the spatial distribution of catalytic activity over the entire crystal by counting single turnover events. We find that ester hydrolysis proceeds on the lateral {10 (1) over bar0} crystal faces, while transesterification occurs on the entire outer crystal surface. Because the method operates at ambient temperature and pressure and in a condensed phase, it can be applied to the growing number of liquid-phase industrial organic transformations to localize catalytic activity on and in inorganic solids. An exciting opportunity is the use of probe molecules with different size and functionality, which should provide insight into shape-selective or structure-sensitive catalysis(13-15) and thus help with the rational design of new or more productive heterogeneous catalysts.
机译:长期以来,通过在高真空条件下探测单晶金属表面上的模型反应来研究表面上的催化过程。然而,绝大多数工业非均相催化发生在环境压力或升高的压力下,使用的是具有晶体面,边缘和缺陷的催化活性不同的复杂材料。显然,如果要合理地设计新的或改良的催化剂,我们需要在表面特征和催化活性之间进行定量关联-理想情况下是在现实的反应条件下获得的(1-3)。透射电子显微镜(4-6)和扫描隧道显微镜(7,8)可以原位表征具有原子分辨率的催化剂表面,但分别受到低压条件和导电表面的限制。总和频率产生光谱可以识别出气相和冷凝相中吸附的反应物和产物的振动(9),但到目前为止,它都缺乏单分子水平的灵敏度。在这里,我们采用荧光显微镜(10-12)来实时监测单个有机分子的化学转化,以监测浸入试剂溶液中的双层氢氧化物晶体催化的反应。通过使用广角显微镜,我们可以通过计数单个周转事件来绘制整个晶体上催化活性的空间分布。我们发现,酯水解在bar0}晶面上的{10(1)侧面进行,而酯交换发生在整个晶体外表面上。由于该方法在环境温度和压力下且在冷凝相中运行,因此可以应用于越来越多的液相工业有机转化中,以将催化活性定位在无机固体之上和之中。一个令人兴奋的机会是使用具有不同大小和功能的探针分子,这应该提供对形状选择或结构敏感的催化作用的见解(13-15),从而有助于合理设计新的或生产效率更高的多相催化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号