首页> 外文期刊>Nature >Probing the chemistry of thioredoxin catalysis with force
【24h】

Probing the chemistry of thioredoxin catalysis with force

机译:用力探索硫氧还蛋白的催化化学

获取原文
获取原文并翻译 | 示例
       

摘要

Thioredoxins are enzymes that catalyse disulphide bond reduction in all living organisms. Although catalysis is thought to proceed through a substitution nucleophilic bimolecular (S_N2) reaction, the role of the enzyme in modulating this chemical reaction is unknown. Here, using single-molecule force-clamp spectro-scopy, we investigate the catalytic mechanism of Escherichia coli thioredoxin (Trx). We applied mechanical force in the range of 25-600 pN to a disulphide bond substrate and monitored the reduction of these bonds by individual enzymes. We detected two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulphide bond, causing a shortening of the substrate polypeptide by 0.79 ±0.09 A (± s.e.m.), and the second elongating the substrate disulphide bond by 0.17 ± 0.02 A (± s.e.m.). These results support the view that the Trx active site regulates the geometry of the participating sulphur atoms with sub-angstrom precision to achieve efficient catalysis. Our results indicate that substrate conformational changes may be important in the regulation of Trx activity under conditions of oxidative stress and mechanical injury, such as those experienced in cardiovascular disease. Furthermore, single-molecule atomic force microscopy techniques, as shown here, can probe dynamic rearrangements within an enzyme's active site during catalysis that cannot be resolved with any other current structural biological technique.
机译:硫氧还蛋白是在所有活生物体中催化二硫键还原的酶。尽管认为催化作用是通过取代亲核双分子(S_N2)反应进行的,但该酶在调节该化学反应中的作用尚不清楚。在这里,我们使用单分子夹钳光谱法研究大肠杆菌硫氧还蛋白(Trx)的催化机理。我们对二硫键底物施加了25-600 pN的机械力,并监测了各个酶对这些键的还原作用。我们检测到了两种其他形式的催化反应,第一种需要对底物二硫键进行重新定向,从而使底物多肽缩短0.79±0.09 A(±sem),第二种使底物二硫键延长0.17±0.02 A(±sem)。这些结果支持了这样的观点,即Trx活性位点以亚埃精度调节参与的硫原子的几何形状,以实现有效的催化作用。我们的结果表明,在氧化应激和机械损伤(例如心血管疾病中的条件)下,底物构象变化可能对Trx活性的调节很重要。此外,如此处所示,单分子原子力显微镜技术可以探测催化过程中酶活性位点内的动态重排,而当前其他任何结构生物学技术都无法解决这种动态重排。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号