首页> 外文期刊>Nature >High-resolution subsurface water-ice distributions on Mars
【24h】

High-resolution subsurface water-ice distributions on Mars

机译:火星上高分辨率的地下水冰分布

获取原文
获取原文并翻译 | 示例
           

摘要

Theoretical models indicate that water ice is stable in the shallow subsurface (depths of < 1-2 m) of Mars at high latitudes. These models have been mainly supported by the observed presence of large concentrations of hydrogen detected by the Gamma Ray Spectrometer suite of instruments on the Mars Odyssey spacecraft. The models and measurements are consistent with a water-ice table that steadily increases in depth with decreasing latitude. More detailed modelling has predicted that the depth at which water ice is stable can be highly variable, owing to local surface heterogeneities such as rocks and slopes, and the thermal inertia of the ground cover. Measurements have, however, been limited to the footprint (several hundred kilometres) of the Gamma Ray Spectrometer suite, preventing the observations from documenting more detailed water-ice distributions. Here I show that by observing the seasonal temperature response of the martian surface with the Thermal Emission Imaging System on the Mars Odyssey spacecraft, it is possible to observe such heterogeneities at subkilometre scale. These observations show significant regional and local water-ice depth variability, and, in some cases, support distributions in the subsurface predicted by atmospheric exchange and vapour diffusion models. The presence of water ice where it follows the depth of stability under current climatic conditions implies an active martian water cycle that responds to orbit-driven climate cycles. Several regions also have apparent deviations from the theoretical stability level, indicating that additional factors influence the ice-table depth. The high-resolution measurements show that the depth to the water-ice table is highly variable within the potential Phoenix spacecraft landing ellipses, and is likely to be variable at scales that may be sampled by the spacecraft.
机译:理论模型表明,水冰在高纬度的火星的浅层地下(深度小于1-2 m)是稳定的。这些模型主要由火星奥德赛飞船上的伽马射线光谱仪套件检测到的高浓度氢的存在所支持。模型和测量结果与水冰台一致,水冰台的深度随着纬度的减小而稳步增加。更详细的模型预测,由于局部表面的非均质性(例如岩石和斜坡)以及地表的热惯性,水冰稳定的深度可能会高度变化。但是,测量仅限于伽玛射线光谱仪套件的占地面积(几百公里),以防止观测结果记录更详细的水冰分布。在这里,我表明,通过使用火星奥德赛飞船上的热发射成像系统观察火星表面的季节性温度响应,可以在亚千米尺度上观察到这种异质性。这些观测结果显示了区域和局部水冰深度的显着变化,并且在某些情况下,通过大气交换和蒸汽扩散模型预测了地下的支持分布。在当前气候条件下跟随稳定深度的水冰的存在,意味着活跃的火星水循环响应了轨道驱动的气候循环。几个区域也与理论稳定性水平存在明显偏差,表明其他因素会影响冰盖深度。高分辨率测量结果表明,到水冰台的深度在潜在的凤凰号航天器着陆椭圆内变化很大,并且可能在航天器可能采样的比例上变化。

著录项

  • 来源
    《Nature》 |2007年第7140期|p.64-67|共4页
  • 作者

    Joshua L. Bandfield;

  • 作者单位

    School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-6305, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号