首页> 外文期刊>Nature >Experimental demonstration of a BDCZ quantum repeater node
【24h】

Experimental demonstration of a BDCZ quantum repeater node

机译:BDCZ量子中继器节点的实验演示

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, Diir, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.
机译:量子通信是一种为网络中的信息交换提供有效和安全方式的方法。已经实现了大规模量子通信(大约100 km);但是,超出此距离范围会出现严重的问题,主要是由于传输通道中不可避免的光子损失。当光子检测器中暗计数的概率变得与正确检测光子的概率相当时,量子通信最终将失败。为了克服这个问题,Briegel,Diir,Cirac和Zoller(BDCZ)引入了量子中继器的概念,结合了纠缠交换和量子存储器以有效地扩展可达到的距离。尽管已通过实验证明了纠缠交换,但由于集成量子存储器的困难,BDCZ量子中继器的实施已证明具有挑战性。在这里,我们实现了光的存储和检索(BDCZ量子转发器的组成部分)的纠缠交换。我们遵循一种将BDCZ策略与原子量子存储器相结合的方案。通过将两个单个光子通过基于300 m光纤的通信通道后,对它们进行联合贝尔状态测量,将两个原子集合(最初每个都与单个发射的光子纠缠在一起)投影到纠缠状态。纠缠存储在原子集合中,随后通过将原子激发转换为光子进行验证。我们的方法本质上是对相位不敏感的,并建立了实现具有固定原子量子位作为量子存储器和飞行光子量子位作为量子信使的量子转发器所需的基本元素。

著录项

  • 来源
    《Nature》 |2008年第7208期|p.1098-1101|共4页
  • 作者单位

    Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

  • 入库时间 2022-08-18 02:55:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号