首页> 外文期刊>Nature >Atomically precise bottom-up fabrication of graphene nanoribbons
【24h】

Atomically precise bottom-up fabrication of graphene nanoribbons

机译:原子精确地自下而上地制造石墨烯纳米带

获取原文
获取原文并翻译 | 示例
       

摘要

Graphene nanoribbons-narrow and straight-edged stripes of graphene, or single-layer graphite-are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices. In particular, although the two-dimensional parent material graphene exhibits semimetallic behaviour, quantum confinement and edge effects should render all graphene nanoribbons with widths smaller than 10nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical, sonochemical and lithographic methods as well as through the unzipping of carbon nanotubes, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling of molecular precursors into linear polyphenylenes and their subsequent cydodehydro-genation. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots, superlattice structures and magnetic devices based on specific graphene nanoribbon edge states.
机译:石墨烯纳米带-石墨烯的窄且直边的条纹或单层石墨-预计将显示出使它们在制造纳米级电子设备方面具有吸引力的电子特性。特别地,尽管二维母体材料石墨烯表现出半金属行为,但是量子限制和边缘效应应使所有宽度小于10nm的石墨烯纳米带成为半导体。但是,由于有限的可用性限制了探索石墨烯纳米带的潜力:尽管它们是使用化学,声化学和光刻方法以及通过拉开碳纳米管制成的,但仍可以可靠地生产小于10 nm的石墨烯纳米带,并且具有化学精度。重大挑战。在这里,我们报告了一种简单的方法,用于生产具有不同拓扑结构和宽度的原子精确的石墨烯纳米带,该方法使用分子前体的表面辅助偶联成线性聚苯并随后进行环十二氢化。石墨烯纳米带产物的拓扑结构,宽度和边缘周边由前体单体的结构决定,前体单体的结构可设计成可使用各种不同的石墨烯纳米带。我们希望我们的自下而上的石墨烯纳米带原子精确制造方法最终将能够对这种令人兴奋的材料类型的性能进行详细的实验研究。它甚至应该为具有工程化学和电子特性的石墨烯纳米带结构提供一条途径,包括理论上预测的基于特定石墨烯纳米带边缘态的带内量子点,超晶格结构和磁性器件。

著录项

  • 来源
    《Nature》 |2010年第7305期|P.470-473|共4页
  • 作者单位

    Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 3602 Thun and 8600 Duebendorf, Switzerland;

    rnEmpa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 3602 Thun and 8600 Duebendorf, Switzerland;

    rnEmpa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 3602 Thun and 8600 Duebendorf, Switzerland;

    rnEmpa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 3602 Thun and 8600 Duebendorf, Switzerland;

    rnEmpa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 3602 Thun and 8600 Duebendorf, Switzerland;

    rnEmpa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 3602 Thun and 8600 Duebendorf, Switzerland;

    rnETH Zurich, Department of Mechanical and Process Engineering, Micro and Nanosystems, 8092 Zurich, Switzerland;

    rnUniversity of Zurich, Physical Chemistry Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland IMPMC, CNRS and Universite Pierre et Marie Curie, 4 place Jussieu, case 115, F-75252 Paris, France;

    rnMax Planck Institute for Polymer Research, Ackermannweg 10, 55124 Mainz, Germany;

    rnMax Planck Institute for Polymer Research, Ackermannweg 10, 55124 Mainz, Germany;

    rnMax Planck Institute for Polymer Research, Ackermannweg 10, 55124 Mainz, Germany;

    rnEmpa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 3602 Thun and 8600 Duebendorf, Switzerland Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:55:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号