首页> 外文期刊>Nature >Grid cells without theta oscillations in the entorhinal cortex of bats
【24h】

Grid cells without theta oscillations in the entorhinal cortex of bats

机译:蝙蝠的内嗅皮层中没有θ振荡的网格细胞

获取原文
获取原文并翻译 | 示例
       

摘要

Grid cells provide a neural representation of space, by discharging when an animal traverses through the vertices of a periodic hexagonal grid spanning the environment1. Although grid cells have been characterized in detail in rats1 6, the fundamental question of what neural dynamics give rise to the grid structure remains unresolved. Two competing classes of models were proposed: network models, based on attractor dynamics7"9, and oscillatory interference models, which propose that interference between somatic and dendritic theta-band oscillations (4-10 Hz) in single neurons transforms a temporal oscillation into a spatially periodic grid10"13. So far, these models could not be dissociated experimentally, because rodent grid cells always co-exist with continuous theta oscillations4"6'14. Here we used a novel animal model, the Egyptian fruit bat15'16, to refute the proposed causal link between grids and theta oscillations. On the basis of our previous finding from bat hippocampus, of spatially tuned place cells in the absence of continuous theta oscillations17, we hypothesized that grid cells in bat medial entorhinal cortex might also exist without theta oscillations. Indeed, we found grid cells in bat medial entorhinal cortex that shared remarkable similarities to rodent grid cells. Notably, the grids existed in the absence of continuous theta-band oscillations, and with almost no theta modulation of grid-cell spiking—both of which are essential prerequisites of the oscillatory interference models. Our results provide a direct demonstration of grid cells in a non-rodent species. Furthermore, they strongly argue against a major class of computational models of grid cells.
机译:网格单元格通过动物横穿横跨环境的周期性六边形网格的顶点时放电来提供空间的神经表示。尽管已经在大鼠中详细描述了网格细胞[1],但是哪些神经动力​​学引起网格结构的根本问题仍未解决。提出了两类竞争模型:基于吸引子动力学7“ 9的网络模型和振荡干扰模型,后者提出单个神经元的体细胞和树突状θ带振荡(4-10 Hz)之间的干扰将时间振荡转化为空间周期性网格10“ 13。到目前为止,这些模型无法通过实验进行分解,因为啮齿动物的网格细胞总是与连续的theta振荡共存[4“ 6'14。在这里,我们使用了一种新颖的动物模型,即埃及水果蝙蝠15'16,来反驳之间的拟定因果关系根据我们先前从蝙蝠海马中发现的,在没有连续θ振荡的情况下空间调节的位置细胞的蝙蝠海马的发现17,我们假设蝙蝠内侧内嗅皮层中的网格细胞也可能存在而没有θ振荡。蝙蝠内侧内嗅皮层中的网格细胞与啮齿动物的网格细胞具有显着的相似性,值得注意的是,这些网格是在没有连续的θ带振荡的情况下存在的,并且几乎没有网格细胞尖峰的θ调制,这两者都是我们的研究结果直接证明了非啮齿动物物种中的网格细胞,此外,他们强烈反对r类网格单元的计算模型。

著录项

  • 来源
    《Nature》 |2011年第7371期|p.103-107|共5页
  • 作者单位

    Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel;

    Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway;

    Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号