首页> 外文期刊>Nature >Quantum teleportation over 143 kilometres using active feed-forward
【24h】

Quantum teleportation over 143 kilometres using active feed-forward

机译:使用主动前馈实现143公里以上的量子隐形传态

获取原文
获取原文并翻译 | 示例
       

摘要

The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.
机译:预计量子互联网将成为下一代信息处理平台,有望实现安全通信并在分布式计算中实现指数级加速。通过量子隐形传态在远距离上分配单个量子比特是实现这种全球平台的关键要素。通过使用量子隐形传态,未知的量子态可以在任意距离上转移到位置未知的一方。自从首次实验证明了独立外部量子位,内部量子位和压缩态的量子隐形传态以来,研究人员逐渐扩大了通信距离。通常情况下,这种情况会在没有经典贝尔状态测量结果主动反馈的情况下发生,这是未来应用(例如量子计算机之间的通信)的重要组成部分。全球量子互联网的基准是在自由空间链路上独立量子比特的量子隐形传态,其衰减对应于卫星与地面站之间的路径。在这里,我们报告了这样一个实验,它实时使用主动前馈。该实验使用了两个自由空间光学链路,即量子和经典光学链路,它们位于拉帕尔马岛和特内里费岛的两个加那利群岛之间,距离143公里。为了实现这一点,我们结合了先进技术,包括与频率无关的偏振纠缠光子对源,超低噪声单光子检测器和纠缠辅助时钟同步。传送的平均状态保真度远远超出了三分之二的经典限制。此外,我们通过完整的量子过程层析成像技术确定了无前馈的量子隐形传态程序的质量。我们的实验验证了这种技术在现实世界中的成熟性和适用性,特别是对于未来的基于卫星的量子隐形传态。

著录项

  • 来源
    《Nature》 |2012年第7415期|p.269-273|共5页
  • 作者单位

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria,Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria,Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria,Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria,Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria,Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria,Max Planck Institute of Quantum Optics, Hans-Kopfermann-Strasse 1,85748 Garching/Munich, Germany;

    Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada;

    Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria,Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria;

    Institute for Quantum Optics and Quantum Information (lQOQl), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria,Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号