首页> 外文期刊>Nature >Optical magnetic imaging of living cells
【24h】

Optical magnetic imaging of living cells

机译:活细胞的光磁成像

获取原文
获取原文并翻译 | 示例
       

摘要

Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (for example, magnetic resonance imaging1), or entail operating conditions that preclude application to living biological samples while providing submicrometre resolution (for example, scanning superconducting quantum interference device microscopy2, electron holography3 and magnetic resonance force microscopy4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nanometres), using an optically detected magnetic field imaging array consisting of a nanometre-scale layer of nitrogen-vacancy colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the nitrogen-vacancy quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria. We also spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field microscopy allows parallel optical and magnetic imaging of multiple cells in a population with submicrometre resolution and a field of view in excess of 100 micrometres. Scanning electron microscope images of the bacteria confirm that the correlated optical and magnetic images can' be used to locate and characterize the magnetosomes in each bacterium. Our results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5'6.
机译:磁成像是探测生物和物理系统的有力工具。但是,现有技术要么与光学显微镜相比具有较差的空间分辨率,因此通常不适用于亚细胞结构的成像(例如,磁共振成像1),或者需要在提供亚微米分辨率的同时无法应用于活生物样品的操作条件(例如,扫描超导量子干涉仪显微镜2,电子全息图3和磁共振力显微镜4)。在这里,我们展示了一种光学探测磁场成像阵列,该成像由在环境实验室条件下并具有亚细胞空间分辨率(400纳米)的活细胞(磁趋化细菌)进行,该光学成像阵列由纳米级的氮空位色心层组成在钻石屑的表面。将细菌置于钻石表面后,我们可以光学探测氮空位量子自旋态,并快速重建由细菌中产生的磁性纳米颗粒(磁小体)链产生的磁场矢量分量的图像。我们还将这些磁场图与在同一设备中获取的光学图像进行空间关联。宽视场显微镜可以对亚群中的多个细胞进行平行光学和磁性成像,分辨率低于亚微米,视野范围超过100微米。细菌的电子显微镜扫描图像证实,相关的光学和磁性图像可用于定位和表征每种细菌中的磁小体。我们的结果提供了一种新的能力,可以在具有高空间分辨率的环境条件下对活细胞中的生物磁结构进行成像,并且将能够在细胞和蜂窝网络内绘制广泛的磁信号5'6。

著录项

  • 来源
    《Nature》 |2013年第7446期|486-489|共4页
  • 作者单位

    Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA,department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

    department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA,department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA,Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA;

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;

    School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA;

    Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA;

    department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

    department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

    Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA;

    Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA,department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA,Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号