首页> 外文期刊>Nature >A solution to release twisted DNA during chromosome replication by coupled DNA polymerases
【24h】

A solution to release twisted DNA during chromosome replication by coupled DNA polymerases

机译:一种通过耦合DNA聚合酶在染色体复制过程中释放扭曲DNA的解决方案

获取原文
获取原文并翻译 | 示例
       

摘要

Chromosomal replication machines contain coupled DNA polymerases that simultaneously replicate the leading and lagging strands. However, coupled replication presents a largely unrecognized topological problem. Because DNA polymerase must travel a helical path during synthesis, the physical connection between leading- and lagging-strand polymerases causes the daughter strands to entwine, or produces extensive build-up of negative supercoils in the newly synthesized DNA. How DNA polymerases maintain their connection during coupled replication despite these topological challenges is unknown. Here we examine the dynamics of the Escherichia coli replisome, using ensemble and single-molecule methods, and show that the replisome may solve the topological problem independent of topoisomerases. We find that the lagging-strand polymerase frequently releases from an Okazaki fragment before completion, leaving single-strand gaps behind. Dissociation of the polymerase does not result in loss from the replisome because of its contact with the leading-strand polymerase. This behaviour, referred to as 'signal release', had been thought to require a protein, possibly primase, to pry polymerase from incompletely extended DNA fragments. However, we observe that signal release is independent of primase and does not seem to require a protein trigger at all. Instead, the lagging-strand polymerase is simply less processive in the context of a replisome. Interestingly, when the lagging-strand polymerase is supplied with primed DNA in trans, uncoupling it from the fork, high processivity is restored. Hence, we propose that coupled polymerases introduce topological changes, possibly by accumulation of superhelical tension in the newly synthesized DNA, that cause lower processivity and transient lagging-strand polymerase dissociation from DNA.
机译:染色体复制机包含耦合的DNA聚合酶,可同时复制前导链和滞后链。但是,耦合复制在很大程度上带来了无法识别的拓扑问题。由于DNA聚合酶在合成过程中必须经过一条螺旋路径,因此前导链和滞后链聚合酶之间的物理连接会导致子链缠绕在一起,或者在新合成的DNA中产生大量的负超螺旋。尽管存在这些拓扑挑战,DNA聚合酶如何在偶联复制过程中保持其连接仍然未知。在这里,我们使用集成和单分子方法检查了大肠杆菌复制体的动力学,并表明该复制体可以独立于拓扑异构酶解决拓扑问题。我们发现,落后链聚合酶在完成前经常从冈崎片段中释放出来,留下单链缺口。聚合酶的解离不会因复制体的丢失而导致,因为它与前导链聚合酶接触。这种行为被称为“信号释放”,被认为需要一种蛋白质(可能是primase)才能从不完全延伸的DNA片段中撬开聚合酶。但是,我们观察到信号释放与引发酶无关,并且似乎根本不需要蛋白质触发。相反,在复制体的情况下,滞后链聚合酶的加工性较低。有趣的是,当向滞后链聚合酶提供反型的引发的DNA,使其与叉子脱钩时,恢复了高的合成能力。因此,我们建议偶联的聚合酶可能通过在新合成的DNA中积累超螺旋张力而引入拓扑变化,从而引起较低的合成能力和瞬时的落后链聚合酶从DNA上解离。

著录项

  • 来源
    《Nature》 |2013年第7443期|119-122|共4页
  • 作者单位

    The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA;

    The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA;

    The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号