首页> 外文期刊>Nature >Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity
【24h】

Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity

机译:母体类维生素A控制3型先天淋巴样细胞并设定后代免疫力

获取原文
获取原文并翻译 | 示例
           

摘要

对吃完全不含维生素A的食物与吃维生素A含量低和高的食物的怀孕小鼠所做的对比,显示了母方的维生素A代谢物(主要是视黄酸)在建立发育中的胎儿的先天免疫系统中所起的作用。这种维生素是胚胎发育过程中次级淋 巴器官的形成所需的,影响后代成年后的免疫能力。%The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORyt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.
机译:对吃完全不含维生素A的食物与吃维生素A含量低和高的食物的怀孕小鼠所做的对比,显示了母方的维生素A代谢物(主要是视黄酸)在建立发育中的胎儿的先天免疫系统中所起的作用。这种维生素是胚胎发育过程中次级淋 巴器官的形成所需的,影响后代成年后的免疫能力。%The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORyt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.

著录项

  • 来源
    《Nature》 |2014年第7494期|123-127A1-A2|共7页
  • 作者单位

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands,Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences)and University Medical Center Utrecht,3584 CT Utrecht, Netherlands;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands;

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands;

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands;

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands;

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands;

    Erasmus Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands;

    Howard Hughes Medical Institute, Molecular Pathogenesis Program, Skirball institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA;

    Howard Hughes Medical Institute, Molecular Pathogenesis Program, Skirball institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA;

    Hubrecht Institute-KNAW(Royal Netherlands Academy of Arts and Scienses)and University Medical Center Utrecht,3584 CT Utrecht, Netherlands;

    Erasmus Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

    Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7,1081BT Amsterdam, The Netherlands;

    Instituto de Medicina Molecular, Faculdadede Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号