首页> 外文期刊>Nature >Beating the Stoner criterion using molecular interfaces
【24h】

Beating the Stoner criterion using molecular interfaces

机译:使用分子界面超越斯托纳准则

获取原文
获取原文并翻译 | 示例
           

摘要

Only three elements are ferromagnetic at room temperature: the transition metals iron, cobalt and nickel. The Stoner criterion explains why iron is ferromagnetic but manganese, for example, is not, even though both elements have an unfilled 3d shell and are adjacent in the periodic table: according to this criterion, the product of the density of states and the exchange integral must be greater than unity for spontaneous spin ordering to emerge(1,2). Here we demonstrate that it is possible to alter the electronic states of non-ferromagnetic materials, such as diamagnetic copper and paramagnetic manganese, to overcome the Stoner criterion and make them ferromagnetic at room temperature. This effect is achieved via interfaces between metallic thin films and C-60 molecular layers. The emergent ferromagnetic state exists over several layers of the metal before being quenched at large sample thicknesses by the material's bulk properties. Although the induced magnetization is easily measurable by magnetometry, low-energy muon spin spectroscopy(3) provides insight into its distribution by studying the depolarization process of low-energy muons implanted in the sample. This technique indicates localized spin-ordered states at, and close to, the metal-molecule interface. Density functional theory simulations suggest a mechanism based on magnetic hardening of the metal atoms, owing to electron transfer(4,5). This mechanism might allow for the exploitation of molecular coupling to design magnetic metamaterials using abundant, non-toxic components such as organic semiconductors. Charge transfer at molecular interfaces may thus be used to control spin polarization or magnetization, with consequences for the design of devices for electronic, power or computing applications (see, for example, refs 6 and 7).
机译:在室温下只有铁磁性的三个元素:过渡金属铁,钴和镍。斯通纳判据解释了为什么铁是铁磁性的,但例如锰却不是,即使两个元素都没有填充3d壳并且在元素周期表中相邻:根据此判据,状态密度与交换积分的乘积自发自旋排序必须大于1(1,2)。在这里,我们证明可以改变非铁磁材料的电子态,例如反磁性铜和顺磁性锰,以克服斯托纳准则,并使它们在室温下呈铁磁性。这种效果是通过金属薄膜与C-60分子层之间的界面实现的。出现的铁磁态存在于金属的多个层上,然后通过材料的整体性质以较大的样品厚度进行淬火。尽管可以通过磁力计很容易地测量出感应的磁化强度,但是低能量μ子自旋光谱学(3)通过研究注入样品中的低能量μ子的去极化过程,可以了解其分布。该技术指示在金属-分子界面处或附近的局部自旋有序状态。密度泛函理论模拟提出了一种基于金属原子磁硬化的机理,这归因于电子转移(4,5)。该机制可能允许利用分子偶联来设计使用大量无毒成分(例如有机半导体)的磁性超材料。因此,分子界面处的电荷转移可用于控制自旋极化或磁化,从而影响电子,电源或计算应用设备的设计(例如,参见参考文献6和7)。

著录项

  • 来源
    《Nature》 |2015年第7563期|69-73|共5页
  • 作者单位

    Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England;

    Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England;

    Univ Liverpool, Stephenson Inst Renewable Energy, Dept Chem, Liverpool L69 3BX, Merseyside, England;

    Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England;

    Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland;

    Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland;

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland;

    Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA;

    Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA;

    Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland;

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland;

    Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England;

    Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England;

    Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England;

    Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England;

    Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号