首页> 外文期刊>Nature >UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis
【24h】

UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis

机译:UbiX是细菌泛醌生物合成所需的黄素异戊二烯基转移酶

获取原文
获取原文并翻译 | 示例
       

摘要

Ubiquinone (also known as coenzyme Q) is a ubiquitous lipid-soluble redox cofactor that is an essential component of electron transfer chains(1). Eleven genes have been implicated in bacterial ubiquinone biosynthesis, including ubiX and ubiD, which are responsible for decarboxylation of the 3-octaprenyl-4-hydroxy-benzoate precursor(2). Despite structural and biochemical characterization of UbiX as a flavin mononucleotide (FMN)-binding protein, no decarboxylase activity has been detected(3,4). Here we report that UbiX produces a novel flavin-derived cofactor required for the decarboxylase activity of UbiD(5). UbiX acts as a flavin prenyltransferase, linking a dimethylallyl moiety to the flavin N5 and C6 atoms. This adds a fourth non-aromatic ring to the flavin isoalloxazine group. In contrast to other prenyltransferases(6,7), UbiX is metal-independent and requires dimethylallyl-monophosphate as substrate. Kinetic crystallography reveals that the prenyltransferase mechanism of UbiX resembles that of the terpene synthases(8). The active site environment is dominated by pi systems, which assist phosphate-C1' bond breakage following FMN reduction, leading to formation of the N5-C1' bond. UbiX then acts as a chaperone for adduct reorientation, via transient carbocation species, leading ultimately to formation of the dimethylallyl C3'-C6 bond. Our findings establish the mechanism for formation of a new flavin-derived cofactor, extending both flavin and terpenoid biochemical repertoires.
机译:泛醌(也称为辅酶Q)是一种普遍存在的脂溶性氧化还原辅因子,是电子传输链的重要组成部分(1)。细菌泛醌的生物合成中涉及11个基因,包括ubiX和ubiD,它们负责使3-octaprenyl-4-hydroxy-benzoate前体脱羧(2)。尽管UbiX作为黄素单核苷酸(FMN)结合蛋白具有结构和生化特征,但未检测到脱羧酶活性(3,4)。在这里,我们报告UbiX产生UbiD(5)的脱羧酶活性所需的新型黄素衍生辅因子。 UbiX充当黄素异戊二烯基转移酶,将二甲基烯丙基部分与黄素N5和C6原子相连。这将第四个非芳族环加到黄素异恶嗪基团上。与其他异戊二烯基转移酶(6,7)相比,UbiX不依赖金属,因此需要二甲基烯丙基单磷酸酯作为底物。动力学晶体学表明,UbiX的异戊二烯基转移酶机制类似于萜烯合酶(8)。活性位点环境主要由pi系统控制,该系统有助于FMN还原后导致磷酸酯-C1'键断裂,从而导致形成N5-C1'键。然后,UbiX通过短暂的碳阳离子作用,充当加合物重新取向的分子伴侣,最终导致形成二甲基烯丙基C3'-C6键。我们的发现建立了一种新的黄素衍生辅因子形成的机制,扩展了黄素和萜类生物化学成分。

著录项

  • 来源
    《Nature》 |2015年第7557期|502-506|共5页
  • 作者单位

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Westhollow Technol Ctr, Innovat Biodomain Shell Int Explorat & Prod, Houston, TX 77082 USA;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

    Univ Manchester, Manchester Inst Biotechnol, Ctr Synthet Biol Fine & Special Chem, Manchester M1 7DN, Lancs, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号