首页> 外文期刊>Nature >A brain-spine interface alleviating gait deficits after spinal cord injury in primates
【24h】

A brain-spine interface alleviating gait deficits after spinal cord injury in primates

机译:缓解灵长类动物脊髓损伤后步态缺陷的脑脊接口

获取原文
获取原文并翻译 | 示例
       

摘要

Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces(1-3) have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis(1,4). Theoretically, this strategy could also restore control over leg muscle activity for walking(5). However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges(6,7). Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion(8-10). Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with realtime triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.
机译:脊髓损伤破坏了大脑与协调运动的脊髓回路之间的通信。为了绕过病变,脑机接口(1-3)直接将皮层活动与肌肉的电刺激联系起来,从而在手麻痹后恢复了抓握能力(1,4)。从理论上讲,这种策略还可以恢复对走路的腿部肌肉活动的控制(5)。然而,复制自然和适应性运动背后的单个肌肉激活模式的复杂序列会带来巨大的概念和技术挑战(6,7)。最近,在大鼠中发现腰椎硬膜外电刺激可以重现协同肌肉群的自然激活并产生运动(8-10)。在这里,我们将腿部运动皮层活动与硬膜外电刺激方案相接口,以建立可减轻非人类灵长类动物脊髓损伤后步态缺陷的大脑-脊柱接口。恒河猴(猕猴)在运动皮层的腿部植入了皮质内微电极阵列,并植入了由空间选择性硬膜外植入物和具有实时触发功能的脉冲发生器组成的脊髓刺激系统。我们设计并实现了无线控制系统,该系统将伸展和屈伸运动状态的在线神经解码与促进这些运动的刺激协议联系在一起。这些系统使猴子可以自由活动,而不受任何限制或约束拴系的电子设备。在对完整(未受伤)的猴子的脑-脊界面进行验证后,我们在胸部进行了单侧皮质脊髓束病变。早在受伤后六天,并且没有事先对猴子进行训练,大脑-脊柱界面恢复了瘫痪的腿在跑步机和地面上的承重运动。集成在脑-脊柱接口中的可植入组件均已获批准用于类似人体研究中的研究应用,这为脊髓损伤患者的概念验证研究提供了一种实用的翻译途径。

著录项

  • 来源
    《Nature》 |2016年第7628期|284-288|共5页
  • 作者单位

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland|Ecole Polytech Fed Lausanne, Sch Bioengn, Ctr Neuroprosthet, Lausanne, Switzerland|Ecole Polytech Fed Lausanne, Sch Bioengn, Inst Bioengn, Lausanne, Switzerland;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland|Brown Univ, Sch Engn, Providence, RI 02912 USA;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland;

    Ecole Polytech Fed Lausanne, Sch Bioengn, Ctr Neuroprosthet, Lausanne, Switzerland|Ecole Polytech Fed Lausanne, Sch Bioengn, Inst Bioengn, Lausanne, Switzerland;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland;

    Medtronic, Minneapolis, MN USA;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland;

    Brown Univ, Sch Engn, Providence, RI 02912 USA;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland;

    Motac Neurosci Ltd, Manchester, Lancs, England;

    Motac Neurosci Ltd, Manchester, Lancs, England;

    Motac Neurosci Ltd, Manchester, Lancs, England|China Acad Med Sci, Inst Lab Anim Sci, Beijing, Peoples R China;

    Fraunhofer Inst Chem Technol ICT IMM, Mainz Inst Microtechnol, Mainz, Germany;

    Medtronic, Minneapolis, MN USA;

    Ecole Polytech Fed Lausanne, Sch Bioengn, Ctr Neuroprosthet, Lausanne, Switzerland|Ecole Polytech Fed Lausanne, Sch Bioengn, Inst Bioengn, Lausanne, Switzerland|Scuola Super Sant Anna, BioRobot Inst, Pisa, Italy;

    Motac Neurosci Ltd, Manchester, Lancs, England|China Acad Med Sci, Inst Lab Anim Sci, Beijing, Peoples R China|Univ Bordeaux, Inst Malad Neurodegenerat, UMR 5293, Bordeaux, France|CNRS, Inst Malad Neurodegenerat, UMR 5293, Bordeaux, France;

    CHU Vaudois, Lausanne, Switzerland;

    Swiss Fed Inst Technol EPFL, Ctr Neuroprosthet, Lausanne, Switzerland|Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland|CHU Vaudois, Lausanne, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号