首页> 外文期刊>Nature >Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake
【24h】

Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake

机译:根据2012年印度洋地震的观测推断出软流圈流变学

获取原文
获取原文并翻译 | 示例
       

摘要

The concept of a weak asthenospheric layer underlying Earth's mobile tectonic plates is fundamental to our understanding of mantle convection and plate tectonics. However, little is known about the mechanical properties of the asthenosphere (the part of the upper mantle below the lithosphere) underlying the oceanic crust, which covers about 60 per cent of Earth's surface. Great earthquakes cause large coseismic crustal deformation in areas hundreds of kilometres away from and below the rupture area. Subsequent relaxation of the earthquake-induced stresses in the viscoelastic upper mantle leads to prolonged postseismic crustal deformation that may last several decades and can be recorded with geodetic methods(1-3). The observed postseismic deformation helps us to understand the rheological properties of the upper mantle, but so far such measurements have been limited to continental-plate boundary zones. Here we consider the postseismic deformation of the very large (moment magnitude 8.6) 2012 Indian Ocean earthquake(4-6) to provide by far the most direct constraint on the structure of oceanic mantle rheology. In the first three years after the Indian Ocean earthquake, 37 continuous Global Navigation Satellite Systems stations in the region underwent horizontal northeastward displacements of up to 17 centimetres in a direction similar to that of the coseismic offsets. However, a few stations close to the rupture area that had experienced subsidence of up to about 4 centimetres during the earthquake rose by nearly 7 centimetres after the earthquake. Our three-dimensional viscoelastic finite-element models of the post-earthquake deformation show that a thin (30-200 kilometres), low-viscosity (having a steady-state Maxwell viscosity of (0.5-10) x 10(18) pascal seconds) asthenospheric layer beneath the elastic oceanic lithosphere is required to produce the observed postseismic uplift.
机译:地球活动构造板块下面的弱软流圈层的概念是我们了解地幔对流和板块构造的基础。但是,对覆盖整个地球表面约60%的洋壳下面的软流圈(岩石圈以下的上地幔部分)的机械特性知之甚少。大地震在距破裂区以下数百公里的区域引起大的同震地壳形变。地震引起的粘弹性上地幔应力的松弛导致地震后地壳变形延长,可能持续数十年,并可用大地测量方法记录下来(1-3)。观测到的地震后变形有助于我们了解上地幔的流变特性,但到目前为止,此类测量仅限于大陆板块边界区域。在这里,我们认为2012年印度洋特大地震(震级8.6)(4-6)的地震后变形为海洋地幔流变学结构提供了最直接的约束。在印度洋地震发生后的头三年中,该地区的37个连续的全球导航卫星系统台站向东北方向的水平位移与同震偏移的方向相似,最高可达17厘米。但是,靠近破裂区域的几个台站在地震期间沉降了大约4厘米,在地震后增加了将近7厘米。我们的地震后变形的三维粘弹性有限元模型表明,薄(30-200公里),低粘度(稳态麦克斯韦粘度为(0.5-10)x 10(18)帕斯卡秒) )需要弹性海洋岩石圈下面的软流圈层来产生观测到的地震后隆升。

著录项

  • 来源
    《Nature》 |2016年第7625期|368-372|共5页
  • 作者单位

    Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA|Univ Sci & Technol China, Sch Earth & Space Sci, Mengcheng Natl Geophys Observ, Hefei 230026, Peoples R China;

    Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA;

    Nanyang Technol Univ, Earth Observ Singapore, Asian Sch Environm, Singapore, Singapore;

    Nanyang Technol Univ, Earth Observ Singapore, Asian Sch Environm, Singapore, Singapore;

    Nanyang Technol Univ, Earth Observ Singapore, Asian Sch Environm, Singapore, Singapore;

    Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi 4648601, Japan;

    Kochi Univ, Dept Appl Sci, Akebono Cho 2-5-1, Kochi 7808520, Japan;

    Nat Resources Canada, Geol Survey Canada, Pacific Geosci Ctr, Sidney, BC, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号