...
首页> 外文期刊>Nature >Operation of a homeostatic sleep switch
【24h】

Operation of a homeostatic sleep switch

机译:稳态睡眠开关的操作

获取原文
获取原文并翻译 | 示例

摘要

Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep(1). In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex(2,3). Artificial activation of these cells induces sleep(2), whereas reductions in excitability cause insomnia(3,4). dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent(3). Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states(3). Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine(4-8) caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the control of sleep-wake state.
机译:睡眠使动物与外界隔绝,带来的巨大风险和代价必须由重大利益来弥补。要了解这种神秘的益处,就要从了解睡眠的动态平衡中来:为了监视睡眠需求,内部记账员必须跟踪与睡眠的核心功能有关的生理变化(1)。在果蝇中,睡眠稳态机制的关键组成部分是神经元簇,它们支配着中央复合体的背扇形体(dFB)(2,3)。这些细胞的人工激活会诱发睡眠(2),而兴奋性降低会导致失眠(3,4)。缺乏睡眠的苍蝇中的dFB神经元倾向于具有电活性,具有高输入电阻和较长的膜时间常数,而处于静止状态的苍蝇中的神经元则具有电沉默(3)。因此,相关证据支持简单的观点,即稳态睡眠控制通过在活动状态和静止状态之间切换促进睡眠的神经元来起作用(3)。在这里,我们演示了由dFB神经元进行的状态切换,将多巴胺确定为操作该开关的神经调节剂,并描述了该开关机制。引起多巴胺(4-8)引起dFB神经元的瞬态超极化在数十毫秒内,并在数分钟内持续抑制兴奋性。两种作用都通过Dop1R2受体转导,并通过钾电导介导。转向电静音涉及到Shaker和Shab携带的电压门控A型电流的下调,以及通过我们称为Sandman的两孔域钾离子通道的独立于电压的泄漏电流的上调。桑德曼(Sandman)由CG8713基因编码,并响应多巴胺而转运至质膜。通过减慢处于开启状态的dFB神经元的重复放电或阻止其进入关闭状态,dFB限制了对Shaker或Sandman表达的干扰,分别减少或增加了睡眠。因此,少数神经元的生物物理变化与睡眠觉醒状态的控制有关。

著录项

  • 来源
    《Nature 》 |2016年第7616期| 333-337| 共5页
  • 作者单位

    Univ Oxford, Ctr Neural Circuits & Behav, Tinsley Bldg,Mansfield Rd, Oxford OX1 3SR, England;

    Univ Oxford, Ctr Neural Circuits & Behav, Tinsley Bldg,Mansfield Rd, Oxford OX1 3SR, England;

    Univ Oxford, Ctr Neural Circuits & Behav, Tinsley Bldg,Mansfield Rd, Oxford OX1 3SR, England;

    Univ Oxford, Ctr Neural Circuits & Behav, Tinsley Bldg,Mansfield Rd, Oxford OX1 3SR, England;

    Univ Oxford, Ctr Neural Circuits & Behav, Tinsley Bldg,Mansfield Rd, Oxford OX1 3SR, England;

    Univ Oxford, Ctr Neural Circuits & Behav, Tinsley Bldg,Mansfield Rd, Oxford OX1 3SR, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号