首页> 外文期刊>Nature >Synchronized cycles of bacterial lysis for in vivo delivery
【24h】

Synchronized cycles of bacterial lysis for in vivo delivery

机译:细菌裂解的同步循环用于体内递送

获取原文
获取原文并翻译 | 示例
           

摘要

The widespread view of bacteria as strictly pathogenic has given way to an appreciation of the prevalence of some beneficial microbes within the human body(1-3). It is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbour disease and thus provide a natural platform for the development of engineered therapies(4-6). Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ(7-10). Here we engineer a clinically relevant bacterium to lyse synchronously at a threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We used microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug delivery platform via co-culture with human cancer cells in vitro. As a proof of principle, we tracked the bacterial population dynamics in ectopic syngeneic colorectal tumours in mice via a luminescent reporter. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies(11), we orally administered the lysis strain alone or in combination with a clinical chemotherapeutic to a syngeneic mouse transplantation model of hepatic colorectal metastases. We found that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumour activity along with a marked survival benefit over either therapy alone. Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites.
机译:人们普遍认为细菌是严格致病的,已经让人们认识到某些有益微生物在人体中的流行(1-3)。某些细菌可能不可避免地进化为优先在具有疾病的环境中生长,从而为工程疗法的开发提供了天然平台(4-6)。这样的疗法可能会受益于细菌,这些细菌被编程为限制细菌的生长,同时不断地原位产生和释放细胞毒性剂(7-10)。在这里,我们设计了一种与临床相关的细菌,以在阈值人口密度下同步裂解并释放出遗传编码的货物。在定额裂解后,少数存活的细菌重新定居了不断增长的种群,从而导致了搏动的传递周期。我们使用微流控设备来表征工程裂解菌株,并通过与人类癌细胞体外共培养证明了其作为药物递送平台的潜力。作为原理的证明,我们通过发光报告器追踪了小鼠异位同基因结肠直肠肿瘤中细菌的种群动态。裂解菌株在体内表现出搏动的种群动态,平均细菌发光度比未修饰菌株低两个数量级。最后,根据以前的发现,即某些细菌可以增强标准疗法的功效(11),我们将裂解菌株单独或与临床化学疗法联合口服给予肝结直肠癌转移小鼠模型。我们发现,电路工程细菌和化学疗法的结合比单独使用任何一种疗法都能显着降低肿瘤活性,并显着提高生存率。我们的方法建立了一种方法,可以利用合成生物学的工具来利用某些细菌在疾病部位定居的自然倾向。

著录项

  • 来源
    《Nature》 |2016年第7614期|81-85|共5页
  • 作者单位

    Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA;

    MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA|Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA;

    Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA;

    MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA;

    Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA;

    MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA;

    Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA;

    MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA;

    Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA;

    MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA|Broad Inst Harvard & MIT, Cambridge, MA 02139 USA|Brigham & Womens Hosp, Dept Med, Cambridge, MA 02139 USA|MIT, Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA|MIT, David H Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA|MIT, Marble Ctr Canc Nanomed, 77 Massachusetts Ave, Cambridge, MA 02139 USA|MIT, Ludwig Ctr Mol Oncol, 77 Massachusetts Ave, Cambridge, MA 02139 USA|Howard Hughes Med Inst, Chevy Chase, MD 20815 USA;

    Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA|Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA|Univ Calif San Diego, Div Biol Sci, Mol Biol Sect, La Jolla, CA 92093 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号