首页> 外文期刊>Nature >Direct observation of dynamic shear jamming in dense suspensions
【24h】

Direct observation of dynamic shear jamming in dense suspensions

机译:直接观察稠密悬浮液中的动态剪切干扰

获取原文
获取原文并翻译 | 示例
           

摘要

Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared(1). These phenomena include solidification during rapid impact(2,3), as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity(4-8). Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity(9-11), even a strongly shear-thickened state still flows and thus cannot be fully jammed(12,13). Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density(9,10,14). Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient(2,15-17). As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems(18,19). This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming(20). This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.
机译:静止状态下的液体状液体,致密的硬质颗粒悬浮液在受到搅动或剪切时会发生惊人的行为转变(1)。这些现象包括快速冲击过程中的凝固(2,3),以及以悬浮液粘度不连续,数量级增加为特征的强剪切增稠(4-8)。最近,这种高度非牛顿的行为大部分是在干扰过渡的框架内进行了解释。然而,尽管卡纸确实会产生类似固体的刚度(9-11),但即使是剪切力很强的状态仍然会流动,因此无法完全卡住(12,13)。此外,尽管悬浮液是不可压缩的,但在标准干扰情况下刚度的开始要求增加颗粒密度(9,10,14)。最后,虽然在稳态下发生剪切增稠,但冲击诱导的凝固是短暂的(2,15-17)。结果,仍然不清楚这些密集的悬浮现象如何关联以及它们如何与干扰联系在一起。在这里,我们通过使用相同的实验系统系统地研究稳态和瞬态状态来解决此问题。我们证明,完全压缩的固体状态可以在不压缩的情况下达到,而仅在剪切作用下可以实现,如最近针对干颗粒系统提出的那样(18,19)。这种状态是由我们直接跟踪的瞬态剪切干扰前沿创建的。我们还表明,剪切应力而非剪切速率是关键控制参数。从这些发现中,我们以颗粒密度和剪切应力为变量,绘制了状态图。我们确定了不连续的剪切增厚,其边缘略有卡塞,刚好低于完全的固体卡塞(20)。该状态图提供了一个统一的框架,该框架与先前在稠密悬架上的实验和仿真结果兼容,该框架通过动态剪切干扰过程将稳态和瞬态行为联系起来。

著录项

  • 来源
    《Nature》 |2016年第7598期|214-217|共4页
  • 作者单位

    Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA|Univ Southampton, Engn & Environm, Southampton SO17 1BJ, Hants, England;

    Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA;

    Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号