首页> 外文期刊>Nature >3D printing of high-strength aluminium alloys
【24h】

3D printing of high-strength aluminium alloys

机译:高强度铝合金的3D打印

获取原文
获取原文并翻译 | 示例
           

摘要

Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed(1,2); the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks(3-5). Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.
机译:基于金属的增材制造或三维(3D)打印是跨多个行业(包括航空航天,生物医学和汽车行业)的潜在破坏性技术。逐层建立金属组件可提高设计自由度和制造灵活性,从而实现复杂的几何形状,增加产品定制和缩短上市时间,同时消除传统的规模经济约束。但是,目前只能可靠地印刷几种合金,其中最相关的是AlSi10Mg,TiAl6V4,CoCr和Inconel 718(1,2);因此,这些合金可以被可靠地印刷。当今使用的5500多种合金中的绝大部分都无法进行加成制造,因为在印刷过程中的熔化和凝固动力学会导致无法忍受的大柱状晶粒和周期性裂纹的微观结构(3-5)。在这里,我们证明可以通过引入在增材制造过程中控制固化的成核剂纳米颗粒来解决这些问题。我们根据晶体学信息选择了成核剂,并将它们组装到7075和6061系列铝合金粉末上。用成核剂官能化后,我们发现这些以前与增材制造不兼容的高强度铝合金可以使用选择性激光熔化成功地进行加工。实现了无裂纹,等轴(即,晶粒的长度,宽度和高度大致相等)的细晶粒微观结构,其材料强度可与锻造材料媲美。我们基于金属的增材制造方法适用于多种合金,并可使用多种增材制造机来实施。因此,它为广泛的工业应用提供了基础,包括使用电子束熔化或定向能量沉积技术代替选择性激光熔化的情况,并且将使其他合金系统(例如不可焊接的镍超合金和金属间化合物)的增材制造成为可能。 。此外,该技术可用于常规工艺中,例如在接合,铸造和注塑中,其中固化裂纹和热撕裂也是常见问题。

著录项

  • 来源
    《Nature》 |2017年第7672期|365-369|共5页
  • 作者单位

    HRL Labs LLC, Sensors & Mat Lab, Architected Mat Dept, Malibu, CA 90265 USA|Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA;

    HRL Labs LLC, Sensors & Mat Lab, Architected Mat Dept, Malibu, CA 90265 USA;

    HRL Labs LLC, Sensors & Mat Lab, Architected Mat Dept, Malibu, CA 90265 USA;

    HRL Labs LLC, Sensors & Mat Lab, Architected Mat Dept, Malibu, CA 90265 USA;

    HRL Labs LLC, Sensors & Mat Lab, Architected Mat Dept, Malibu, CA 90265 USA;

    Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号