首页> 外文期刊>Nature Materials >Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials
【24h】

Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

机译:光触发的活体内粘附肽激活可调节生物材料的细胞粘附,炎症和血管形成

获取原文
获取原文并翻译 | 示例
           

摘要

Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.
机译:经过工程设计可在再生医学中引起靶向细胞反应的材料必须显示具有精确时空控制的生物配体。尽管近来已经实现了对于培养中的细胞使用外部触发(例如光和电场)具有时间调控的生物粘附配体呈递的材料,但是体内时间配体呈递对细胞-材料应答的影响是未知的。在这里,我们提出了使用具有保护基团的细胞粘附肽在时间和空间上控制生物配体的体内呈递的一般策略,该保护基可以通过透皮光照轻松去除,从而使该肽具有充分的活性。我们证明植入的生物材料上的细胞粘附RGD肽的非侵入性,透皮时间调节激活可调节体内细胞粘附,炎症,纤维包裹和材料的血管形成。这项工作表明,可以利用触发的生物配体的体内呈递方式来指导与植入的生物材料相关的组织修复反应。

著录项

  • 来源
    《Nature Materials》 |2015年第3期|352-360|共9页
  • 作者单位

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    Max-Planck-lnstitut fuer Polymerforschung, Mainz 55128, Germany;

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA;

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    Max-Planck-lnstitut fuer Polymerforschung, Mainz 55128, Germany;

    Max-Planck-lnstitut fuer Polymerforschung, Mainz 55128, Germany;

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    Max-Planck-lnstitut fuer Polymerforschung, Mainz 55128, Germany;

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号