...
首页> 外文期刊>Nature Astronomy >An experimental study of the surface formation of methane in interstellar molecular clouds
【24h】

An experimental study of the surface formation of methane in interstellar molecular clouds

机译:甲烷在星际分子云中表面形成的实验研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Methane is one of the simplest stable molecules that is both abundant and widely distributed across space. Observational surveys of CH4 ice towards low- and high-mass young stellar objects showed that much of the CH4 is expected to be formed by the hydrogenation of C on dust grains, and that CH4 ice is strongly correlated with solid H2O. However, this has not been investigated under controlled laboratory conditions. Here, we successfully demonstrate with a C-atom beam implemented in an ultrahigh vacuum apparatus the formation of CH4 ice in two separate co-deposition experiments: C + H on a 10 K surface to mimic CH4 formation directly before H2O ice is formed on the dust grain, and C + H + H2O on a 10 K surface to mimic CH4 formed simultaneously with H2O ice. We confirm that CH4 can be formed by the reaction of atomic C and H, and that the CH4 formation rate is twice as high when CH4 is formed within a H2O-rich ice. This is in agreement with the observational finding that interstellar CH4 and H2O form together in the polar ice phase. The conditions that lead to interstellar CH4 (and CD4) ice formation are reported, and can be incorporated into astrochemical models to further constrain CH4 chemistry in the interstellar medium and in other regions where CH4 is inherited.Methane ice has been presumed to form via the sequential hydrogenation of carbon atoms on dust grains for many years, but now Qasim et al. have performed the experiment, with and without the presence of water. Methane forms more rapidly in the polar ice phase.
机译:甲烷是最简单的稳定分子之一,横跨空间均有丰富和广泛分布。朝向低质量和大质量术术术对象的观察调查显示,预期大部分CH4将通过粉尘颗粒上的C氢化形成,并且CH 4冰与固体H2O强烈地相关。但是,这尚未在受控实验室条件下进行调查。这里,我们成功地示出了在超高真空装置中实施的C字母梁,在两个单独的共沉积实验中形成CH4冰:在10k表面上的C + H直接在H2O冰上直接形成模拟CH4形成在10k表面上的灰尘和C + H + H 2 O与H2O冰同时形成的模拟CH4。我们确认CH4可以通过原子C和H的反应形成,并且CH4形成速率是CH4在富含H 2 O的冰中形成时的两倍。这与观察结果发现在极性冰阶段一起形成突出的CH4和H2O形式。报道了导致星际的CH4(和CD4)冰形成的条件,并且可以掺入星体化学模型中,以进一步约束在星际介质中的CH 4化学,并且在CH4被遗传的其他区域中。已经推测甲烷冰通过碳原子含有多年尘颗粒上的碳原子的氢化,但现在Qasim等人。已经进行了实验,在没有水的情况下进行。甲烷在极性冰相中形成更快。

著录项

  • 来源
    《Nature Astronomy》 |2020年第8期|781-785|共5页
  • 作者单位

    Leiden Univ Astrophys Lab Leiden Observ Leiden Netherlands;

    Leiden Univ Astrophys Lab Leiden Observ Leiden Netherlands;

    Friedrich Schiller Univ Jena Lab Astrophys Grp Max Planck Inst Astron Inst Solid State Phys Jena Germany;

    Leiden Univ Astrophys Lab Leiden Observ Leiden Netherlands;

    Queen Mary Univ London Sch Elect Engn & Comp Sci London England;

    Leiden Univ Leiden Observ Leiden Netherlands;

    Leiden Univ Astrophys Lab Leiden Observ Leiden Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号