...
首页> 外文期刊>Natural Hazards >Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols
【24h】

Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols

机译:使用LiDAR数据评估路边岩体的崩塌危害:优化数据收集和处理协议

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Highways and railroads situated within rugged terrain are often subjected to the hazard of rockfalls. The task of assessing roadside rockmasses for potential hazards typically involves an on-site visual investigation of the rockmass by an engineer or geologist. At that time, numerous parameters associated with discontinuity orientations and spacing, block size (volume) and shape distributions, slope geometry, and ditch profile are either measured or estimated. Measurements are typically tallied according to a formal hazard rating system, and a hazard level is determined for the site. This methodology often involves direct exposure of the evaluating engineer to the hazard and can also create a potentially non-unique record of the assessed slope based on the skill, knowledge and background of the evaluating engineer. Light Detection and Ranging (LiDAR)–based technologies have the capability to produce spatially accurate, high-resolution digital models of physical objects, known as point clouds. Mobile terrestrial LiDAR equipment can collect, at traffic speed, roadside data along highways and rail lines, scanning continual distances of hundreds of kilometres per day. Through the use of mobile terrestrial LiDAR, in conjunction with airborne and static systems for problem areas, rockfall hazard analysis workflows can be modified and optimized to produce minimally biased, repeatable results. Traditional rockfall hazard analysis inputs include two distinct, but related sets of variables related to geological or geometric control. Geologically controlled inputs to hazard rating systems include kinematic stability (joint identification/orientation) and rock block shape and size distributions. Geometrically controlled inputs include outcrop shape and size, road, ditch and outcrop profile, road curvature and vehicle line of sight. Inputs from both categories can be extracted or calculated from LiDAR data, although there are some limitations and special sampling and processing considerations related to structural character of the rockmass, as detailed in this paper.
机译:位于崎terrain地形中的高速公路和铁路经常遭受落石的危害。评估路边岩体潜在危害的任务通常涉及工程师或地质学家对岩体进行现场目视调查。那时,测量或估计了与不连续方向和间距,块体尺寸(体积)和形状分布,坡度几何形状以及沟渠轮廓相关的许多参数。通常根据正式的危害等级系统对测量进行统计,并确定现场的危害等级。这种方法通常涉及评估工程师直接暴露于灾害中,并且还可能基于评估工程师的技能,知识和背景来创建评估坡度的潜在非唯一记录。基于光检测和测距(LiDAR)的技术能够生成空间精确,高分辨率的物理对象数字模型,称为点云。移动地面LiDAR设备可以交通速度收集高速公路和铁路沿线的路边数据,每天扫描数百公里的连续距离。通过使用移动地面LiDAR,结合针对问题区域的机载和静态系统,可以修改和优化落石灾害分析工作流程,以产生最小的偏差,可重复的结果。传统的落石灾害分析输入包括与地质或几何控制有关的两个不同但相关的变量集。危害等级系统的地质控制输入包括运动稳定性(关节识别/定向)以及岩块的形状和大小分布。几何控制输入包括露头形状和大小,道路,沟渠和露头轮廓,道路曲率和车辆视线。可以从LiDAR数据中提取或计算这两个类别的输入,尽管存在一些局限性以及与岩体结构特征有关的特殊采样和处理注意事项,如本文所述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号