首页> 外文期刊>Monthly Weather Review >The Sensitivity of Simulated Storm Structure, Intensity, and Precipitation Efficiency to Environmental Temperature
【24h】

The Sensitivity of Simulated Storm Structure, Intensity, and Precipitation Efficiency to Environmental Temperature

机译:模拟风暴结构,强度和降水效率对环境温度的敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

Prior parameter space studies of simulated deep convection are extended to embrace shifts in the environmental temperature. Within the context of the parameter space study design, shifts in this environmental temperature are roughly equivalent to changes in the ambient precipitable water (PW). Two series of simulations are conducted: one in a warm environmental regime that is associated with approximately 60 mm of precipitable water, and another with temperatures 8℃ cooler, so that PW is reduced to roughly 30 mm. The sets of simulations include tests of the impact of changes in the buoyancy and shear profile shapes and of changes in mixed- and moist layer depths, all of which have been shown to be important in prior work. Simulations discussed here also feature values of surface-based pseudoadiabatic convective available potential energy (CAPE) of 800, 2000, or 3200 J kg~(-1), and a single semicircular hodograph having a radius of 12 m s~(-1), but with variable vertical shear. The simulations reveal a consistent trend toward stronger peak updraft speeds for the cooler temperature (reduced PW) cases, when the other environmental parameters are held constant. Roughly comparable increases in updraft speeds are noted for all combinations of mixed- and moist layer depths. These increases in updraft strength evidently result from both the reduction of condensate loading aloft and the lower altitudes at which the latent heat release by freezing and deposition commences in the cooler, low-PW environments. As expected, maximum storm precipitation rates tend to diminish as PW is decreased, but only slightly, and by amounts not proportionate to the decrease in PW. The low-PW cases thus actually feature larger environment-relative precipitation efficiency than do the high-PW cases. In addition, more hail reaches the surface in the low-PW cases because of reduced melting in the cooler environments. Although these experiments were designed to feature specified amounts of pseudoadiabatic CAPE, it appears that reversible CAPE provides a more accurate prediction of updraft strength, at least for the storms discussed here.
机译:模拟深对流的先前参数空间研究已扩展到涵盖环境温度的变化。在参数空间研究设计的背景下,该环境温度的变化大致等于环境可沉淀水(PW)的变化。进行了两个系列的模拟:一个是在温暖的环境条件下与大约60毫米的可沉淀水相关联,另一个是与温度降低8摄氏度,从而使PW降低到大约30毫米。这套模拟包括对浮力和剪切剖面形状变化以及混合和湿润层深度变化影响的测试,所有这些在先前的工作中都显示出重要作用。这里讨论的模拟还具有800、2000或3200 J kg〜(-1)的基于表面的假绝热对流可用势能(CAPE)的值,以及半径为12 ms〜(-1)的单个半圆形全息图,但垂直剪切力可变。当其他环境参数保持恒定时,模拟显示出在较低温度(降低PW)的情况下,峰值上升速度更快的趋势。对于混合和湿润层深度的所有组合,上升速度的可比增长大致可比。这些上升气流强度的提高显然是由于冷凝水的装载量降低以及在较低的PW环境下开始冻结和沉积释放潜热的较低海拔造成的。不出所料,最大风暴降水率往往随着PW的降低而降低,但仅略有降低,且数量与PW的降低不成比例。因此,低PW案例实际上比高PW案例具有更大的相对于环境的降水效率。此外,由于在较凉爽的环境中融化减少,在低PW情况下,更多的冰雹到达表面。尽管将这些实验设计为具有特定数量的假绝热CAPE,但似乎可逆性CAPE至少对于此处讨论的风暴,可提供对上升气流强度的更准确预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号