首页> 外文期刊>Molecular BioSystems >Dynamic Network Topology Changes In Functional Modules Predict Responses To Oxidative Stress In Yeast
【24h】

Dynamic Network Topology Changes In Functional Modules Predict Responses To Oxidative Stress In Yeast

机译:功能模块中的动态网络拓扑变化可预测酵母中对氧化应激的响应

获取原文
获取原文并翻译 | 示例
           

摘要

In response to environmental challenges, biological systems respond with dynamic adaptive changes in order to maintain the functionality of the system. Such adaptations may lead to cumulative stress over time, possibly leading to global failure of the system. When studying such systems responses, it is therefore important to understand them in system-wide and dynamic context. Here we hypothesize that dynamic changes in the topology of functional modules of integrated biological networks reflect their activity under specific environmental challenges. We introduce topological enrichment analysis of functional subnetworks (TEAFS), a method for the analysis of integrated molecular profile and interactome data, which we validated by comprehensive metabolomic analysis of dynamic yeast response under oxidative stress. TEAFS identified activation of multiple stress response related mechanisms, such as lipid metabolism and phospholipid biosynthesis. We identified, among others, a fatty acid elongase IFA38 as a hub protein which was absent at all time points under oxidative stress conditions. The deletion mutant of the IFA38 encoding gene is known for the accumulation of ceramides. By applying a comprehensive metabolomic analysis, we confirmed the increased concentrations over time of ceramides and palmitic acid, a precursor of de novo ceramide biosynthesis. Our results imply that the connectivity of the system is being dynamically modulated in response to oxidative stress, progressively leading to the accumulation of (lipo)toxic lipids such as ceramides. Studies of local network topology dynamics can be used to investigate as well as predict the activity of biological processes and the system's responses to environmental challenges and interventions.
机译:为了应对环境挑战,生物系统以动态适应性变化做出响应,以维持系统的功能。这样的适应可能导致随着时间的推移累积压力,可能导致系统整体故障。因此,在研究此类系统响应时,重要的是要在系统范围内和动态环境中理解它们。在这里,我们假设整合生物网络功能模块的拓扑结构中的动态变化反映了其在特定环境挑战下的活动。我们介绍了功能子网的拓扑富集分析(TEAFS),这是一种用于分析综合分子图谱和相互作用组数据的方法,我们通过对氧化应激下动态酵母反应的综合代谢组学分析进行了验证。 TEAFS确定了多种应激反应相关机制的激活,例如脂质代谢和磷脂的生物合成。我们鉴定了脂肪酸延伸酶IFA38作为毂蛋白,该蛋白在氧化应激条件下的所有时间点都不存在。已知IFA38编码基因的缺失突变体是神经酰胺蓄积的。通过应用全面的代谢组学分析,我们确认了神经酰胺和棕榈酸(从头神经酰胺生物合成的前体)随时间的推移浓度增加。我们的结果表明,系统的连通性是响应氧化应激而动态调节的,逐渐导致(脂)毒性脂质(如神经酰胺)的积累。对本地网络拓扑动态的研究可用于调查和预测生物过程的活动以及系统对环境挑战和干预措施的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号