首页> 外文期刊>Molecular BioSystems >Multi-spectroscopic methods combined with molecular modeling dissect the interaction mechanisms of ractopamine and calf thymus DNA
【24h】

Multi-spectroscopic methods combined with molecular modeling dissect the interaction mechanisms of ractopamine and calf thymus DNA

机译:多光谱方法与分子建模相结合剖析了莱克多巴胺与小牛胸腺DNA的相互作用机理

获取原文
获取原文并翻译 | 示例
           

摘要

The toxic interaction of ractopamine (RAC) with calf thymus DNA (ct DNA) was studied in vitro using multi-spectroscopic methods and molecular modeling methods. The hypochromic effect without a noticeable shift in UV-vis absorption indicated that the minor groove binding mode existed in the interaction between RAC and DNA. The fluorescence quenching of RAC was observed with the increasing addition of DNA and was proved to be the static quenching. The binding constant and the binding site sizes were 4.13 x 103 and 0.97, respectively. The thermodynamic calculation demonstrated that the hydrogen bond and van der Waals were main acting forces. This result further confirmed the existence of groove binding mode. Afterwards, we found another interaction mode, electrostatic binding mode through the fluorescence polarization, ionic effects and denatured DNA experiments. Circular dichroism spectroscopy (CD) was then employed to monitor the conformation changes of DNA. Molecular modeling studies illustrated the visual display of the binding mode and the detailed information of the H-bond.
机译:使用多光谱方法和分子建模方法,体外研究了莱克多巴胺(RAC)与小牛胸腺DNA(ct DNA)的毒性相互作用。在不明显改变UV-vis吸收的情况下的变色效应表明在RAC和DNA之间的相互作用中存在小沟结合模式。随着DNA的添加,观察到RAC的荧光猝灭,并被证明是静态猝灭。结合常数和结合位点大小分别为4.13×103和0.97。热力学计算表明,氢键和范德华力是主要作用力。该结果进一步证实了凹槽结合模式的存在。之后,我们通过荧光偏振,离子效应和变性DNA实验发现了另一种相互作用模式,即静电结合模式。然后采用圆二色光谱法(CD)监测DNA的构象变化。分子建模研究说明了结合模式的可视化显示和氢键的详细信息。

著录项

  • 来源
    《Molecular BioSystems》 |2012年第7期|p.1902-1907|共6页
  • 作者单位

    Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, P.R.China;

    Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, P.R.China;

    Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, P.R.China;

    Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, P.R.China;

    Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, P.R.China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号