...
首页> 外文期刊>Molecular Biology and Evolution >The Origins of Eukaryotic Gene Structure
【24h】

The Origins of Eukaryotic Gene Structure

机译:真核基因结构的起源

获取原文
获取原文并翻译 | 示例

摘要

Most of the phenotypic diversity that we perceive in the natural world is directly attributable to the peculiar structure of the eukaryotic gene, which harbors numerous embellishments relative to the situation in prokaryotes. The most profound changes include introns that must be spliced out of precursor mRNAs, transcribed but untranslated leader and trailer sequences (untranslated regions), modular regulatory elements that drive patterns of gene expression, and expansive intergenic regions that harbor additional diffuse control mechanisms. Explaining the origins of these features is difficult because they each impose an intrinsic disadvantage by increasing the genic mutation rate to defective alleles. To address these issues, a general hypothesis for the emergence of eukaryotic gene structure is provided here. Extensive information on absolute population sizes, recombination rates, and mutation rates strongly supports the view that eukaryotes have reduced genetic effective population sizes relative to prokaryotes, with especially extreme reductions being the rule in multicellular lineages. The resultant increase in the power of random genetic drift appears to be sufficient to overwhelm the weak mutational disadvantages associated with most novel aspects of the eukaryotic gene, supporting the idea that most such changes are simple outcomes of semi-neutral processes rather than direct products of natural selection. However, by establishing an essentially permanent change in the population-genetic environment permissive to the genome-wide repatterning of gene structure, the eukaryotic condition also promoted a reliable resource from which natural selection could secondarily build novel forms of organismal complexity. Under this hypothesis, arguments based on molecular, cellular, and/or physiological constraints are insufficient to explain the disparities in gene, genomic, and phenotypic complexity between prokaryotes and eukaryotes.
机译:我们在自然界中感知到的大多数表型多样性直接归因于真核基因的特殊结构,相对于原核生物的情况,它具有许多修饰。最深刻的变化包括必须从前体mRNA中剪接的内含子,已转录但未翻译的前导序列和尾部序列(未翻译区域),驱动基因表达模式的模块化调控元件以及具有额外扩散控制机制的扩展基因间区域。很难解释这些特征的起源,因为它们各自都会通过增加缺陷性等位基因的基因突变率而带来固有的劣势。为了解决这些问题,此处提供了关于真核基因结构出现的一般假设。关于绝对种群大小,重组率和突变率的大量信息强烈支持这样一种观点,即真核生物相对于原核生物减少了遗传有效种群大小,尤其是多细胞谱系中的极端减少是规则。结果导致的随机遗传漂移能力的增加似乎足以抵消与真核基因大多数新方面相关的弱突变缺点,从而支持这样的观点,即大多数此类变化是半中性过程的简单结果,而不是直接的中性过程产物。自然选择。但是,通过在种群遗传环境中建立一个基本上永久的变化,允许基因组范围内的基因结构重新分布,真核生物条件也促进了可靠的资源,自然选择可以从中可靠地建立生物复杂性的新形式。在这种假设下,基于分子,细胞和/或生理学约束的论点不足以解释原核生物和真核生物之间基因,基因组和表型复杂性的差异。

著录项

  • 来源
    《Molecular Biology and Evolution 》 |2006年第2期| 450-468| 共19页
  • 作者

    Michael Lynch;

  • 作者单位

    Department of Biology Indiana University Bloomington;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号