首页> 外文期刊>IEEE transactions on mobile computing >Time and Energy Complexity of Distributed Computation of a Class of Functions in Wireless Sensor Networks
【24h】

Time and Energy Complexity of Distributed Computation of a Class of Functions in Wireless Sensor Networks

机译:无线传感器网络中一类函数的分布式计算的时间和能量复杂性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We consider a scenario in which a wireless sensor network is formed by randomly deploying $n$ sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in cite{wanet.giridhar-kumar03fusion}), of which $max$, $min$, and indicator functions are important examples; our discussions are couched in terms of the $max$ function. We view the problem as one of message passing distributed computation over a geometric random graph. The network is assumed to be synchronous; the sensors synchronously measure values, and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (i) the communication topology assumed, and (ii) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralised contention-free scheduling of packet transmissions. Firstly, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one time maximum computation. We show that, for an optimal algorithm, the computation time and energy expenditure scale, respectively, as $Thetaleft(sqrt{frac{n}{log n }}right)$ and $Theta(n)$ asymptotically as the number of sensors $n rightarrow infty$. Secondly, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the Tree algorithm, Multi-Hop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as $n rightarrow infty$. In particular we show that the -computation time for these algorithms scales as $Theta left( sqrt{n log n}right)$, $Theta (n)$ and $Theta left( sqrt{n log n}right)$, respectively; whereas the energy expended scales as $Theta (n)$, $Theta left( n sqrt{frac{n}{log n }} right)$ and $Theta left( n sqrt{nlog n}right)$, respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling; the simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler and hence our results can be viewed as providing bounds for the performance with practical distributed schedulers.
机译:我们考虑一种场景,其中无线传感器网络是通过随机部署$ n $个传感器来测量某个区域的某些空间功能而形成的,目的是计算测量值的功能并将其传达给操作员站。我们将自己限制在类型阈值函数的类别(如在cite {wanet.giridhar-kumar03fusion}中定义),其中$ max $,$ min $和指标函数是重要的示例;我们的讨论基于$ max $函数进行。我们将问题视为通过几何随机图传递分布式计算的消息之一。假定网络是同步的;传感器同步测量值,然后协作计算并使用这些值将计算出的功能交付给操作员站。计算算法的不同之处在于(i)假定的通信拓扑,以及(ii)节点需要交换以执行计算的消息。本文的重点是在分组传输的集中无争用调度的假设下,为随机无线网络上的分布函数计算的时间和能量复杂度建立(概率)定标律。首先,在对计算算法没有任何约束的情况下,我们建立了一次最大计算的计算时间和能量消耗的缩放定律。我们表明,对于最优算法,计算时间和能量消耗规模分别作为传感器数量渐近地为$ Thetaleft(sqrt {frac {n} {log n}} right)$和$ Theta(n)$ $ n rightarrow infty $。其次,我们分析了三种可以在特定实际情况下使用的特定计算算法的性能,即树算法,多跳传输和波纹算法(一种八卦算法),并获得了计算的定律时间和精力支出为$ nightarrow infty $。特别是,我们显示了这些算法的-计算时间分别缩放为$ Theta left(sqrt {n log n} right)$,$ Theta(n)$和$ Theta left(sqrt {n log n} right)$。 ;而能量消耗的比例分别为$ Theta(n)$,$ Theta左(n sqrt {frac {n} {log n}}右)$和$ Theta左(n sqrt {nlog n} right)$。最后,提供的仿真结果表明我们的分析确实捕获了正确的缩放比例。这些模拟还可以得出缩放定律中常数乘数的估计值。我们的分析始终假设使用一个集中的最佳调度程序,因此我们的结果可以看作是实际分布式调度程序为性能提供了界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号