首页> 外文期刊>Mineralium Deposita >Late Hercynian polymetallic vein-type base-metal mineralization in the Iberian Pyrite Belt: fluid-inclusion and stable-isotope geochemistry (S–O–H–Cl)
【24h】

Late Hercynian polymetallic vein-type base-metal mineralization in the Iberian Pyrite Belt: fluid-inclusion and stable-isotope geochemistry (S–O–H–Cl)

机译:伊比利亚黄铁矿带晚期海西多金属脉型贱金属矿化:流体包裹体和稳定同位素地球化学(S–O–H–Cl)

获取原文
获取原文并翻译 | 示例
           

摘要

Late Variscan vein-type mineralization in the Iberian Pyrite Belt, related to the rejuvenation of pre-existing fractures during late Variscan extensional tectonism, comprises pyrite–chalcopyrite, quartz–galena–sphalerite, quartz–stibnite–arsenopyrite, quartz–pyrite, quartz–cassiterite–scheelite, fluorite–galena–sphalerite–chalcopyrite, and quartz–manganese oxide mineral assemblages. Studies of fluid inclusions in quartz, stibnite, and barite as well as the sulfur isotopic compositions of stibnite, galena, and barite from three occurrences in the central part of the Iberian Pyrite Belt reveal compelling evidence for there having been different sources of sulfur and depositional conditions. Quartz–stibnite mineralization formed at temperatures of about 200 °C from fluids which had undergone two-phase separation during ascent. Antimony and sulfide are most probably derived by alteration of a deeper lying, volcanic-hosted massive sulfide mineralization, as indicated by δ34S signatures from −1.45 to −2.74‰. Sub-critical phase separation of the fluid caused extreme fractionation of chlorine isotopes (δ37Cl between −1.8 and 3.2‰), which correlates with a fractionation of the Cl/Br ratios. The source of another high-salinity fluid trapped in inclusions in late-stage quartz from quartz–stibnite veins remains unclear. By contrast, quartz–galena veins derived sulfide (and metals?) by alteration of a sedimentary source, most likely shale-hosted massive sulfides. The δ34S values in galena from the two study sites vary between −15.42 and −19.04‰. Barite which is associated with galena has significantly different δ34S values (−0.2 to 6.44‰) and is assumed to have formed by mixing of the ascending fluids with meteoric water.
机译:伊比利亚黄铁矿带中晚期的瓦里斯坎脉状矿化,与晚期瓦里斯坎伸展构造的既有裂缝的恢复有关,包括黄铁矿-黄铜矿,石英-方铅矿-闪锌矿,石英-闪锌矿-砷黄铁矿,石英-黄铁矿,石英-锡石-白钨矿,萤石-方铅矿-闪锌矿-黄铜矿以及石英-氧化锰矿物组合。对来自伊比利亚黄铁矿带中部三处的石英,辉锑矿和重晶石中的流体包裹体以及辉锑矿,方铅矿和重晶石的硫同位素组成的研究表明,令人信服的证据表明存在不同的硫和沉积物来源条件。上升过程中经过两相分离的流体在约200°C的温度下形成了石英-辉石矿化作用。锑和硫化物很可能是由深部火山喷发的块状硫化物矿化作用所产生的,δ34S特征从-1.45到-2.74‰表示。流体的亚临界相分离导致氯同位素的极端分馏(δ37Cl在-1.8和3.2‰之间),这与Cl / Br比的分馏有关。尚不清楚从石英闪长石脉中截留在晚期石英夹杂物中的另一种高盐度流体的来源。相比之下,石英-方铅矿脉通过沉积源的改变而衍生出硫化物(和金属?),最有可能是页岩中大量的硫化物。两个研究地点的方铅矿中的δ34 S值在−15.42和−19.04‰之间变化。与方铅矿有关的重晶石的δ34S值相差很大(-0.2至6.44‰),并假定是由上升流体与流水混合形成的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号