...
首页> 外文期刊>Mineralium Deposita >Noril’sk–Talnakh Cu–Ni–PGE deposits: a revised tectonic model
【24h】

Noril’sk–Talnakh Cu–Ni–PGE deposits: a revised tectonic model

机译:诺里尔斯克-塔尔纳克铜-镍-铂族金属矿床:修订后的构造模型

获取原文
获取原文并翻译 | 示例
           

摘要

The Noril’sk mining district is located at the northwest margin of the Tunguska basin, in the centre of the 3,000×4,000 km Siberian continental flood basalt (CFB) province. This CFB province was formed at the Permo-Triassic boundary from a superplume that ascended into the geometric centre of the Laurasian continent, which was surrounded by subducting slabs of oceanic crust. We suggest that these slabs could have reached the core–mantle boundary, and they may have controlled the geometric focus of the superplume. The resulting voluminous magma intruded and erupted in continental rifts and related extensive flood basalt events over a 2–4 Ma period. Cu–Ni–PGE sulfide mineralization is found in olivine-bearing differentiated mafic intrusions beneath the flood basalts at the northwestern margin of the Siberian craton and also in the Taimyr Peninsula, some 300 km east of a triple junction of continental rifts, now buried beneath the Mesozoic–Cenozoic sedimentary basin of western Siberia. The Noril’sk-I and Talnakh-Oktyabr’sky deposits occur in the Noril’sk–Kharaelakh trough of the Tunguska CFB basin. The Cu–Ni–PGE-bearing mineralized intrusions are 2–3 km-wide and 20 km-long differentiated chonoliths. Previous studies suggested that parts of the magma remained in intermediate-level crustal chambers where sulfide saturation and accumulation took place before emplacement. The 5–7-km-thick Neoproterozoic to Palaeozoic country rocks, containing sedimentary Cu mineralization and evaporites, may have contributed additional metal and sulfur to this magma. Classic tectonomagmatic models for these deposits proposed that subvertical crustal faults, such as the northeast-trending Noril’sk–Kharaelakh fault, were major trough-parallel conduits providing access for magmas to the final chambers. However, geological maps of the Noril’sk region show that the Noril’sk–Kharaelakh fault offsets the mineralization, which was deformed into folds and offset by related reverse faults, indicating compressional deformation after mineralization in the Late Triassic to Early Jurassic. In addition, most of the intrusions are sills, not dykes as should be expected if the vertical faults were major conduits. A revised tectonic model for the Noril’sk region takes into account the fold structure and sill morphology of the dominant intrusions, indicating a lateral rather than vertical emplacement direction for the magma into final chambers. Taking into account the fold structure of the country rocks, the present distribution of the differentiated intrusions hosting the Noril’sk-I and Talnakh–Oktyabr’sky deposits may represent the remnants of a single, >60 km long, deformed and eroded palm-shaped cluster of mineralized intrusions, which are perceived as separate intrusions at the present erosional level. The original direction of sill emplacement may have been controlled by a northeast-trending paleo-rise, which we suggest is present at the southeastern border of the Noril’sk–Kharaelakh trough based on analysis of the unconformity at the base of the CFB. The mineralized intrusions extend along this rise, which we interpret as a structure that formed above the extensionally tilted block in the metamorphic basement. Geophysical data indicate the presence of an intermediate magma chamber that could be linked with the Talnakh intrusion. In turn, this T-shaped flat chamber may link with the Yenisei–Khatanga rift along the northwest-trending Pyasina transform fault, which may have served as the principal magma conduit to the intermediate chamber. It then produced the differentiated mineralized intrusions that melted through the evaporites with in situ precipitation of massive, disseminated, and copper sulfide ore. The Noril’sk–Kharaelakh crustal fault may not relate to mineralization and possibly formed in response to late Mesozoic spreading in the Arctic Ocean.
机译:诺里尔斯克(Noril’sk)矿区位于通古斯(Tunguska)盆地的西北边缘,在3,000×4,000公里的西伯利亚大陆洪水玄武岩(CFB)省的中心。这个CFB省是在一个Perpl到Triassic边界处形成的,该超级块上升到Laurasian大陆的几何中心,周围被俯冲的大洋壳板包围。我们建议这些平板可能已经达到了芯-幔边界,并且它们可能已经控制了超浆体的几何焦点。由此产生的大量岩浆在2-4 Ma的时期内被大陆裂谷侵入和喷发,并引发了广泛的洪水玄武岩事件。 Cu-Ni-PGE硫化物矿化存在于西伯利亚克拉通西北缘的洪水玄武岩下的含橄榄石的差异性镁铁质侵入体中,以及在大陆裂谷的三重交界以东约300公里的泰米尔半岛,现已被埋在下方西伯利亚西部中新生代沉积盆地。 Noril'sk-I和Talnakh-Oktyabr'sky矿床发生在通古斯CFB盆地的Noril'sk-Kharaelakh槽中。含Cu–Ni–PGE的矿化侵入体宽2–3公里,长20公里。先前的研究表明,部分岩浆保留在中层地壳室内,在那里硫化物在沉积前就发生了饱和和聚集。 5-7公里厚的新元古代至古生代的乡村岩石,包含沉积的铜矿化和蒸发岩,可能为该岩浆贡献了额外的金属和硫。这些矿床的经典构造学模型表明,垂直下的地壳断层,如东北向的诺里尔斯克-卡拉赫拉赫断层,是主要的槽平行管道,为岩浆进入最终的腔室提供了通道。但是,诺里尔斯克地区的地质图显示,诺里尔斯克-哈拉拉赫断裂断层使成矿作用抵消,该成矿作用被折叠成褶皱,并被相关的逆断层抵消,这表明三叠纪晚期至侏罗纪晚期成矿后的压缩变形。另外,如果垂直断层是主要管道,则大多数侵入都是基石,而不是堤坝。修改后的Noril'sk地区的构造模型考虑了主要侵入体的褶皱结构和基岩形态,表明岩浆进入最终舱室的横向而非垂直方向。考虑到乡村岩石的褶皱结构,目前存放着Noril'sk-I和Talnakh-Oktyabr'sky矿床的不同侵入岩的分布可能代表了一个长于60 km,变形和侵蚀的棕榈树的残余物,矿化侵入体形成的异形簇,在目前的侵蚀水平上被视为单独的侵入体。基床进驻的原始方向可能是由东北趋势的古隆起控制的,根据对CFB底部不整合的分析,我们认为这是存在于Noril'sk-Kharaelakh槽的东南边界。矿化侵入体沿这一上升方向延伸,我们将其解释为在变质基底中的倾斜倾斜块上方形成的结构。地球物理数据表明存在可能与Talnakh入侵有关的中间岩浆室。反过来,这个T形平腔可能沿着西北走向的Pyasina转换断层与叶尼塞—卡坦加裂谷相连,这可能是通向中间腔的主要岩浆导管。然后,它产生了分化的矿化侵入体,这些侵入体通过蒸发岩融化,并在原地沉淀出块状,散布的硫化铜矿。 Noril'sk-Kharaelakh地壳断层可能与矿化无关,可能是由于北冰洋中生代晚期扩散而形成的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号