...
首页> 外文期刊>Mineralium Deposita >The Paleoproterozoic carbonate-hosted Pering Zn–Pb deposit, South Africa. II: fluid inclusion, fluid chemistry and stable isotope constraints
【24h】

The Paleoproterozoic carbonate-hosted Pering Zn–Pb deposit, South Africa. II: fluid inclusion, fluid chemistry and stable isotope constraints

机译:南非古元古代碳酸盐岩Pering Zn–Pb矿床。 II:流体包裹体,流体化学和稳定的同位素约束

获取原文
获取原文并翻译 | 示例

摘要

The Pering deposit is the prime example of Zn–Pb mineralisation hosted by stromatolitic dolostones of the Neoarchean to Paleoproterozoic Transvaal Supergroup. The hydrothermal deposit centers on subvertical breccia pipes that crosscut stromatolitic dolostones of the Reivilo Formation, the lowermost portion of the Campbellrand Subgroup. Four distinct stages of hydrothermal mineralisation are recognised. Early pyritic rock matrix brecciation is followed by collomorphous sphalerite mineralisation with replacive character, which, in turn, is succeeded by coarse grained open-space-infill of sphalerite, galena, sparry dolomite, and quartz. Together, the latter two stages account for ore-grade Zn–Pb mineralisation. The fourth and final paragenetic stage is characterised by open-space-infill by coarse sparry calcite. The present study documents the results of a detailed geochemical study of the Pering deposit, including fluid inclusion microthermometry, fluid chemistry and stable isotope geochemistry of sulphides (δ34S) and carbonate gangue (δ13C and δ18O). Microthermometric fluid inclusion studies carried out on a series of coarsely grained crystalline quartz and sphalerite samples of the latter, open-space-infill stage of the main mineralisation event reveal the presence of three major fluid types: (1) a halite–saturated aqueous fluid H2O–NaCl–CaCl2 (>33 wt% NaCl equivalent) brine, (2) low-salinity meteoric fluid (<7 wt% NaCl) and (3) a carbonic CH4–CO2–HS− fluid that may be derived from organic material present within the host dolostone. Mixing of these fluids have given rise to variable mixtures (H2O–CaCl2–NaCl ±(CH4–CO2–HS−), 2 to 25 wt% NaCl+CaCl2). Heterogeneous trapping of the aqueous and carbonic fluids occurred under conditions of immiscibility. Fluid temperature and pressure conditions during mineralisation are determined to be 200–210°C and 1.1–1.4 kbar, corresponding to a depth of mineralisation of 4.1–5.2 km. Chemical analyses of the brine inclusions show them to be dominated by Na and Cl with lesser amounts of Ca, K and SO4. Fluid ratios of Cl/Br indicate that they originated as halite saturated seawater brines that mixed with lower salinity fluids. Analyses of individual brine inclusions document high concentrations of Zn and Pb (∼1,500 and ∼200 ppm respectively) and identify the brine as responsible for the introduction of base metals. Stable isotope data were acquired for host rock and hydrothermal carbonates (dolomite, calcite) and sulphides (pyrite, sphalerite, galena and chalcopyrite). The ore-forming sulphides show a trend to 34S enrichment from pyrite nodules in the pyritic rock matrix breccia (δ34S = −9.9 to +3.7‰) to paragenetically late chalcopyrite of the main mineralisation event (δ34S = +30.0‰). The observed trend is attributed to Rayleigh fractionation during the complete reduction of sulphate in a restricted reservoir by thermochemical sulphate reduction, and incremental precipitation of the generated sulphide. The initial sulphate reservoir is expected to have had an isotopic signature around 0‰, and may well represent magmatic sulphur, oxidised and leached by the metal-bearing brine. The δ18O values of successive generations of dolomite, from host dolostone to paragenetically late saddle dolomite follow a consistent trend that yields convincing evidence for extensive water rock interaction at variable fluid–rock ratios. Values of δ13C remain virtually unchanged and similar to the host dolostone, thus suggesting insignificant influx of CO2 during the early and main stages of mineralisation. On the other hand, δ13C and δ18O of post-ore calcite define two distinct clusters that may be attributed to changes in the relative abundance in CH4 and CO2 during waning stages of hydrothermal fluid flow.
机译:Pering矿床是由新archarean到古元古代的Transvaal超群的层间质白云岩所蕴藏的Zn–Pb矿化的主要例子。热液沉积物集中在横切角砾岩管道上,该管道横穿了坎贝朗次组最下部的里维洛组的层间滑石白云岩。认识到热液成矿有四个不同的阶段。早期的黄铁矿岩石基岩析出,其次是具有变质特征的同形闪锌矿矿化作用,而闪锌矿,方铅矿,闪锌矿白云石和石英则由粗粒状的空洞填充物所替代。在一起,后两个阶段解释了矿石级的Zn-Pb矿化。第四个也是最后一个同生阶段,其特征是粗斜方解石填充了开放空间。本研究记录了对Pering矿床的详细地球化学研究的结果,包括流体包裹体热力学,硫化物(δ34 S)和碳酸盐脉石(δ13 C和δ18< / sup> O)。在主要矿化事件的开放空间填充阶段,对一系列粗晶晶体石英和闪锌矿样品进行了微热流体包裹体研究,发现存在三种主要流体类型:(1)盐岩-饱和含水流体H2 O–NaCl–CaCl2 (> 33 wt%NaCl当量)盐水,(2)低盐度陨石液(<7 wt%NaCl)和(3)碳CH4 –CO2 –HS-流体可能源自宿主白云岩中的有机物质。这些流体的混合产生可变的混合物(H2 O–CaCl2 –NaCl±(CH4 –CO2 –HS-),2至25 wt%NaCl + CaCl2 )。在不混溶的条件下发生了水和碳流体的异质捕集。矿化过程中的流体温度和压力条件确定为200–210°C和1.1–1.4 kbar,对应于4.1–5.2 km的矿化深度。盐水夹杂物的化学分析表明,它们以Na和Cl为主,而Ca,K和SO4含量较少。 Cl / Br的流体比表明它们源自与较低盐度流体混合的盐岩饱和海水盐水。对各种盐水夹杂物的分析表明,锌和铅的浓度较高(分别约为1,500和〜200 ppm),并确定盐水是引入贱金属的原因。获得了宿主岩和热液碳酸盐(白云石,方解石)和硫化物(黄铁矿,闪锌矿,方铅矿和黄铜矿)的稳定同位素数据。形成矿的硫化物显示出从黄铁矿岩石基质角砾岩中的黄铁矿结核(δ34 S = -9.9至+ 3.7‰)富集到34Sups的趋势,到主要成矿作用的方铅矿晚黄铜矿( δ34 S = + 30.0‰)。观察到的趋势归因于通过热化学硫酸盐还原法在受限储层中硫酸盐的完全还原过程中瑞利分馏,以及生成的硫化物的增量沉淀。最初的硫酸盐储层有望具有约0‰的同位素特征,并且很可能代表岩浆硫,被含金属的盐水氧化并浸出。从主体白云岩到方差论晚鞍白云岩,连续几代白云岩的δ18O值遵循一致的趋势,这为在可变的流体-岩石比下广泛的水岩相互作用提供了令人信服的证据。 δ13​​ C的值几乎保持不变,与宿主白云岩相似,因此在成矿的早期和主要阶段,CO2 的流入微不足道。另一方面,矿石后方解石的δ13 C和δ18 O定义了两个不同的团簇,这可能是由于CH4 和CO2 相对富集度的变化所致。热液流的减弱阶段。

著录项

  • 来源
    《Mineralium Deposita 》 |2006年第7期| 686-706| 共21页
  • 作者单位

    Paleoproterozoic Mineralisation Research Group Department of Geology University of Johannesburg;

    Paleoproterozoic Mineralisation Research Group Department of Geology University of Johannesburg;

    School of Earth Sciences University of Leeds;

    Paleoproterozoic Mineralisation Research Group Department of Geology University of JohannesburgEconomic Geology Research Institute School of Geosciences University of the Witwatersrand;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pering; South Africa; Fluid inclusions; Fluid chemistry; Stable isotopes;

    机译:佩林;南非;流体包裹体;流体化学;稳定同位素;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号