首页> 外文期刊>Mineralium Deposita >The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite
【24h】

The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite

机译:加拿大萨德伯里Creighton Ni–Cu–PGE硫化物矿床中的硫化物中的铂族元素(PGE)和其他亲硫元素的分布,以及五氧化石中钯的起源

获取原文
获取原文并翻译 | 示例
       

摘要

Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn, Te, and Zn, have been determined in base metal sulfide (BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS) cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (∼1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite (rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular).
机译:铂族元素(PGE),Ag,As,Au,Bi,Cd,Co,Mo,Pb,Re,Sb,Se,Sn,Te和Zn的浓度已在来自BMS的贱金属矿物中测定位于加拿大萨德伯里的Creighton Ni-Cu-PGE硫化物矿床的西部分支(402槽矿体)。硫化物组合以黄铁矿为主,以次要的五方辉石,黄铜矿和黄铁矿为主,它们代表单硫化物固溶体(MSS)堆积。这项研究的目的是建立PMS在BMS和铂族矿物(PGM)之间的分布,以便更好地了解矿床的成岩作用。质量平衡计算表明,BMS包含所有的Co和Se,其中Os,Pd,Ru,Cd,Sn和Zn占很大比例(40-90%),而Ag却很少(<35%), Au,Bi,Ir,Mo,Pb,Pt,Rh,Re,Sb和Te pyr和钌等比例地集中在黄铁矿,绿铁矿和黄铁矿中。钴和钯(约1 ppm)被浓缩在五氧化二铁中。银,镉,锡,锌以及极少数情况下的金和碲都集中在黄铜矿中。硒在所有三个BMS中的存在比例均相等。铱带,铑和铂存在于呈eutherdrally分区的PGE硫化砷中,其中包括铁矾石(IrAsS),硅钙铁矿(RhAsS),PGE-Ni富钴铁矿(CoAsS)和次生闪锌矿(PtAs 2 ) ,所有这些都主要存在于磁黄铁矿和五方铁矿中。银,金,金,铋,钼,铅,Re,锑和碲主要存在于离散的辅助矿物中,例如电子(Au–Ag合金),黑铁矿(Ag 2 Te),黑钙石(PdBiTe )和硫化rh。硫铁矿,五方铁矿和黄铁矿中Os,Ru,Ni和Co的富集以及黄铜矿中Ag,Au,Cd,Sn,Te和Zn的富集可以通过从硫化物液体中进行MSS的分步结晶,然后通过萃取硫化物。 PGE硫化砷从硫化物熔体中的早期结晶耗尽了Ir和Rh中的MSS。不能仅通过硫化物分馏来解释五氧化锰中Pd的含量,因为Pd应该分配到残留的富Cu液体中,并存在于黄铜矿或黄铜矿周围的PGM中。 Pd在不同的方铁矿结构中的变化提供了证据,表明Pd在从MSS析出期间扩散到方铁矿中。 Pd的来源是最初分配给MSS的少量Pd,以及附近富铜部分(中间固溶体和/或含Pd的PGM)中的大量Pd。 Pd的来源在扩散过程中被耗尽,因此,较晚形成的膨润土(粗粒,边缘,易燃火焰的边缘)所含的Pd比早形成的膨润土(粗粒状的芯)少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号